DOI QR코드

DOI QR Code

Progress in Recent Research of 2D and Crystalline Carbon Materials in Secondary-ion Battery Application

2차원 결정성 탄소 소재의 최근 이차전지 소재 개발 동향: 그래핀(graphene)과 그라파인(graphyne)의 이차전지 개발 최근 동향

  • Lee, Hyuck Jin (Department of Chemistry Education, Kongju National University) ;
  • Bong, Sungyool (Department of Chemistry Education, Kongju National University)
  • 이혁진 (공주대학교 화학교육과) ;
  • 봉성율 (공주대학교 화학교육과)
  • Received : 2022.11.09
  • Accepted : 2022.11.18
  • Published : 2022.11.30

Abstract

The development of new materials is an essential key for unraveling the environmental and energy problems all over the world. Among the various application materials in this area, crystalline and two-dimensional carbon materials have been studied from points of view such as electrical conductivity, chemical stability, and surface engineering due to the assembly of honeycomb and sp/sp2 hybridization structure. Novel two-dimensional materials, including graphene and graphyne, have been continuously reported for several decades to develop in renewable energy fields. Also, various pristine/engineered two-dimensional carbon allotropes have been researched to combine metal nanoparticles in the form of a sphere, cubic, and so on. The renewable energy performance to apply for these materials is drastically increased. In this review, we introduce the research points of the 2D carbon allotrope materials, graphene and graphyne, and applications to improve the performance of renewable energy applications.

우리의 삶에 있어 새로운 물질의 개발/발견은 전 세계의 환경 및 에너지 문제를 해결하는 데 필수적인 열쇠이다. 이러한 관점에서 결정성 탄소계 2차원 재료는 벌집 또는 sp/sp2 하이브리드 구조의 탄소 소재의 전기 전도도, 화학적 안정성, 표면 공학 등 다양한 관점에서 오랜 시간 동안 연구되어 왔다. 특히, 그래핀을 포함한 새로운 2차원 탄소 소재 개발은 신재생 에너지 분야에서 수십 년 동안 지속적으로 개발되고 있다. 구체, 입방체 등의 다양한 구조 형태의 금속나노입자와 함께 복합화하여 시너지 효과를 낼 수 있는 탄소동소체가 연구되고 있으며, 이를 통하여 신재생 에너지 분야의 디바이스 성능이 획기적으로 향상되고 있다. 본 총설에서는 2D 탄소동소체 재료, 그래핀 및 그라파인의 연구 방향과 재생 에너지 분야의 성능을 향상시키기 위한 응용 방법을 소개하고자 한다.

Keywords

References

  1. X. Tang, S. Lv, K. Jiang, G. Zhou, and X. Liu, Recent development of ionic liquid-based electrolytes in lithiumion batteries, J. Power Sources, 542, 231792 (2022). https://doi.org/10.1016/j.jpowsour.2022.231792
  2. X. Jiang, Y. Chen, X. Meng, W. Cao, C. Liu, Q. Huang, N. Naik, V. Murugadoss, M. Huang, and Z. Guo, The impact of electrode with carbon materials on safety performance of lithium-ion batteries: A review, Carbon, 191, 448-470 (2022). https://doi.org/10.1016/j.carbon.2022.02.011
  3. C. Huang, Y. Li, N. Wang, Y. Xue, Z. Zuo, H. Liu, and Y. Li, Progress in research into 2D graphdiyne-based materials, Chem. Rev., 118, 7744-7803 (2018). https://doi.org/10.1021/acs.chemrev.8b00288
  4. M. Inagaki and F. Kang, Graphene derivatives: graphane, fluorographene, graphene oxide, graphyne and graphdiyne, J. Mater. Chem. A, 2, 13193-13206 (2014). https://doi.org/10.1039/C4TA01183J
  5. A. Razaq, F. Bibi, X. Zheng, R. Papadakis, S. H. M. Jafri, and H. Li, Review on graphene-, graphene oxide-, reduced graphene oxide-based flexible composites: From fabrication to applications, Materials, 15, 1012 (2022). https://doi.org/10.3390/ma15031012
  6. M. S. A. Bhuyan, M. N. Uddin, M. M. Islam, F. A. Bipasha, and S. S. Hossain, Synthesis of graphene, Int. Nano Lett., 6, 65-83 (2016). https://doi.org/10.1007/s40089-015-0176-1
  7. L. Sathishkumar, V. Dhanapal, S. Ravi, R. Saratha, and N. Sugumaran, Compatibility of lithium ion phosphate battery in solar off grid application, J. Electrochem. Sci. Technol., 13(4), 472-478 (2022). https://doi.org/10.33961/jecst.2022.00423
  8. H. Kim, D. I. Kim, and W.-S. Yoon, Enhancing electrochemical performance of Co(OH)2 anode materials by introducing graphene for next-generation liion batteries, J. Electrochem. Sci. Technol., 13(3), 398-406 (2022). https://doi.org/10.33961/jecst.2022.00122
  9. M.-S. Shin, C.-K. Choi, M.-S. Park, and S.-M. Lee, Spherical silicon/CNT/carbon composite wrapped with graphene as an anode material for lithium-ion batteries, J. Electrochem. Sci. Technol., 13(1), 159-166 (2022). https://doi.org/10.33961/jecst.2021.01004
  10. X. Lu, M. Yu, H. Huang, and R. S. Ruoff, Tailoring graphite with the goal of achieving single sheets, Nanotechnology, 10, 269 (1999). https://doi.org/10.1088/0957-4484/10/3/308
  11. Y. Zhang, J. P. Small, W. V. Pontius, and P. Kim, Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices, Appl. Phys. Lett., 86, 073104 (2005). https://doi.org/10.1063/1.1862334
  12. A.M. Affoune, B.L.V. Prasad, H. Sato, T. Enoki, Y. Kaburagi, and Y. Hishiyama, Experimental evidence of a single nano-graphene, Chem. Phys. Lett., 348, 17-20 (2001). https://doi.org/10.1016/S0009-2614(01)01066-1
  13. S. Bong, Y.-R. Kim, I. Kim, S. Woo, S. Uhm, J. Lee, and H. Kim, Graphene supported electrocatalysts for methanol oxidation, Electrochem. Commun., 12, 129-131 (2010). https://doi.org/10.1016/j.elecom.2009.11.005
  14. L. Sun, G. Yuan, L. Gao, J. Yang, M. Chhowalla, M. H. Gharahcheshmeh, K. K. Gleason, Y. S. Choi, B. H. Hong, and Z. Liu, Chemical vapour deposition, Nat. Rev. Methods Primer, 1, 5 (2021). https://doi.org/10.1038/s43586-020-00005-y
  15. M. M. Haley, S. C. Brand, and J. J. Pak, Carbon networks based on dehydrobenzoannulenes: Synthesis of graphdiyne substructures, Angew. Chem. Int. Ed., 36(8), 836-838 (1997). https://doi.org/10.1002/anie.199708361
  16. J. M. Kehoe, J. H. Kiley, J. J. English, C. A. Johnson, R. C. Petersen, and M. M. Haley, Carbon networks based on dehydrobenzoannulenes. 3. Synthesis of graphyne substructures1, Org. Lett., 2(7), 969-972 (2000). https://doi.org/10.1021/ol005623w
  17. W. B. Wan and M. M. Haley, Carbon networks based on dehydrobenzoannulenes. 4. Synthesis of "Star" and "Trefoil" graphdiyne substructures via sixfold crosscoupling of hexaiodobenzene, J. Org. Chem., 66(11), 3893-3901 (2001). https://doi.org/10.1021/jo010183n
  18. X. Li, B. Li, Y. He, and F. Kang, A review of graphynes: Properties, applications and synthesis, New Carbon Mater., 35, 619-629 (2020). https://doi.org/10.1016/S1872-5805(20)60518-2
  19. X. Gao, H. Liu, D. Wang, and J. Zhang, Graphdiyne: synthesis, properties, and applications, Chem. Soc. Rev., 48, 908-936 (2019). https://doi.org/10.1039/C8CS00773J
  20. J. Zhou, J. Li, Z. Liu, and J. Zhang, Exploring approaches for the synthesis of few-layered graphdiyne, Adv. Mater., 31, 1803758 (2019). https://doi.org/10.1002/adma.201803758
  21. D. Malko, C. Neiss, F. Vines, and A. Gorling, Competition for graphene: Graphynes with directiondependent dirac cones, Phys. Rev. Lett., 108, 086804 (2012). https://doi.org/10.1103/PhysRevLett.108.086804
  22. H. Wang, T. Maiyalagan, and X. Wang, Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications, ACS Catal., 2, 781-794 (2012). https://doi.org/10.1021/cs200652y
  23. X. Li, D. Geng, Y. Zhang, X. Meng, R. Li, and X. Sun, Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries, Electrochem. Commun., 13, 822-825 (2011). https://doi.org/10.1016/j.elecom.2011.05.012
  24. S. H. Yang, S.-K. Park, and Y. C. Kang, Metal-organic frameworks derived FeSe2@C nanorods interconnected by N-doped graphene nanosheets as advanced anode materials for Na-ion batteries, Int. J. Energy Res., 45, 20909-20920 (2021). https://doi.org/10.1002/er.7146
  25. S. Yu, B. Guo, T. Zeng, H. Qu, J. Yang, and J. Bai, Graphene-based lithium-ion battery anode materials manufactured by mechanochemical ball milling process: A review and perspective, Compos. Part B Eng., 246, 110232 (2022). https://doi.org/10.1016/j.compositesb.2022.110232
  26. Z. Luo, S. Lim, Z. Tian, J. Shang, L. Lai, B. MacDonald, C. Fu, Z. Shen, T. Yu, and J. Lin, Pyridinic N doped graphene: synthesis, electronic structure, and electrocatalytic property, J. Mater. Chem., 21, 8038-8044 (2011). https://doi.org/10.1039/c1jm10845j
  27. D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu, Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties, Nano Lett., 9, 1752-1758 (2009). https://doi.org/10.1021/nl803279t
  28. A. L. M. Reddy, A. Srivastava, S. R. Gowda, H. Gullapalli, M. Dubey, and P. M. Ajayan, Synthesis of nitrogen-doped graphene films for lithium battery application, ACS Nano, 4, 6337-6342 (2010). https://doi.org/10.1021/nn101926g
  29. S. M. Shinde, E. Kano, G. Kalita, M. Takeguchi, A. Hashimoto, and M. Tanemura, Grain structures of nitrogen-doped graphene synthesized by solid source-based chemical vapor deposition, Carbon, 96, 448-453 (2016). https://doi.org/10.1016/j.carbon.2015.09.086
  30. M. Son, S.-S. Chee, S.-Y. Kim, W. Lee, Y. H. Kim, B.-Y. Oh, J. Y. Hwang, B. H. Lee, and M.- H. Ham, High-quality nitrogen-doped graphene films synthesized from pyridine via two-step chemical vapor deposition, Carbon, 159, 579-585 (2020). https://doi.org/10.1016/j.carbon.2019.12.095
  31. J. Xu, G. Dong, C. Jin, M. Huang, and L. Guan, Sulfur and nitrogen Co-doped, few-layered graphene oxide as a highly efficient electrocatalyst for the oxygen-reduction reaction, ChemSusChem, 6, 493-499 (2013). https://doi.org/10.1002/cssc.201200564
  32. F. Hassani, H. Tavakol, F. Keshavarzipour, and A. Javaheri, A simple synthesis of sulfur-doped graphene using sulfur powder by chemical vapor deposition, RSC Adv., 6, 27158-27163 (2016). https://doi.org/10.1039/C6RA02109C
  33. J. Zhou, Z. Wang, Y. Chen, J. Liu, B. Zheng, W. Zhang, and Y. Li, Growth and properties of largearea sulfur-doped graphene films, J. Mater. Chem. C, 5, 7944-7949 (2017). https://doi.org/10.1039/C7TC00447H
  34. L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z. F. Wang, K. Sorr, L. Balicas, F. Liu, and P. M. Ajayan, Atomic layers of hybridized boron nitride and graphene domains, Nat. Mater., 9, 430-435 (2010). https://doi.org/10.1038/nmat2711
  35. T. Wu, H. Shen, L. Sun, B. Cheng, B. Liu, and J. Shen, Nitrogen and boron doped monolayer graphene by chemical vapor deposition using polystyrene, urea and boric acid, New J. Chem., 36, 1385-1391 (2012). https://doi.org/10.1039/c2nj40068e
  36. Z. Zhai, H. Shen, J. Chen, X. Li, and Y. Li, Metal-free synthesis of boron-doped graphene glass by hot-filament chemical vapor deposition for wave energy harvesting, ACS Appl. Mater. Interfaces, 12(2), 2805-2815 (2020). https://doi.org/10.1021/acsami.9b17546
  37. H. Kim, O. Renault, A. Tyurnina, J.-P. Simonato, D. Rouchon, and D. Mariolle, Doping efficiency of single and randomly stacked bilayer graphene by iodine adsorption, Appl. Phys. Lett., 105, 011605 (2014). https://doi.org/10.1063/1.4889747
  38. Z.-S. Wu, W. Ren, L. Xu, F. Li, and H.-M. Cheng, Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries, ACS Nano, 5, 5463-5471 (2011). https://doi.org/10.1021/nn2006249
  39. G. H. Jun, S. H. Jin, B. Lee, B. H. Kim, W.-S. Chae, S. H. Hong, and S. Jeon, Enhanced conduction and charge-selectivity by N-doped graphene flakes in the active layer of bulkheterojunction organic solar cells, Energy Environ. Sci., 6, 3000-3006 (2013). https://doi.org/10.1039/c3ee40963e
  40. Z.-H. Sheng, L. Shao, J.-J. Cen, W.-J. Bao, F.-B. Wang, and X.-H. Xia, Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis, ACS Nano, 5, 4350-4358 (2011). https://doi.org/10.1021/nn103584t
  41. X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo, and H. Dai, N-doping of graphene through electrothermal reactions with ammonia, Science, 324, 768-771 (2009). https://doi.org/10.1126/science.1170335
  42. S. Yang, L. Zhi, K. Tang, X. Feng, J. Maier, and K. Mullen, Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions, Adv. Funct. Mater., 22, 3634-3640 (2012). https://doi.org/10.1002/adfm.201200186
  43. H. M. Jeong, J. W. Lee, W. H. Shin, Y. J. Choi, H. J. Shin, J. K. Kang, and J. W. Choi, Nitrogendoped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes, Nano Lett., 11, 2472-2477 (2011). https://doi.org/10.1021/nl2009058
  44. Y. Shao, S. Zhang, M. H. Engelhard, G. Li, G. Shao, Y. Wang, J. Liu, I. A. Aksay, and Y. Lin, Nitrogen-doped graphene and its electrochemical applications, J. Mater. Chem., 20, 7491-7496 (2010). https://doi.org/10.1039/c0jm00782j
  45. Y. Wang, F. Yu, M. Zhu, C. Ma, D. Zhao, C. Wang, A. Zhou, B. Dai, J. Ji, and X. Guo, Ndoping of plasma exfoliated graphene oxide via dielectric barrier discharge plasma treatment for the oxygen reduction reaction, J. Mater. Chem. A, 6, 2011-2017 (2018). https://doi.org/10.1039/C7TA08607E
  46. S. Li, Z. Wang, H. Jiang, L. Zhang, J. Ren, M. Zheng, L. Dong, and L. Sun, Plasma-induced highly efficient synthesis of boron doped reduced graphene oxide for supercapacitors, Chem. Commun., 52, 10988-10991 (2016). https://doi.org/10.1039/C6CC04052G
  47. V. K. Abdelkader-Fernandez, M. Domingo-Garcia, F. J. Lopez-Garzon, D. M. Fernandes, C. Freire, M. D. L. Torre, M. Melguizo, M. L. Godino-Salido, and M. Perez-Mendoza, Expanding graphene properties by a simple S-doping methodology based on cold CS2 plasma, Carbon, 144, 269-279 (2019). https://doi.org/10.1016/j.carbon.2018.12.045
  48. J. Guo, W. Wang, Y. Li, J. Liang, Q. Zhu, J. Li, and X. Wang, Room-temperature synthesis of waterdispersible sulfur-doped reduced graphene oxide without stabilizers, RSC Adv., 10, 26460-26466 (2020). https://doi.org/10.1039/D0RA04838K
  49. D. W. Chang, H.-J. Choi, and J.-B. Baek, Wetchemical nitrogen-doping of graphene nanoplatelets as electrocatalysts for the oxygen reduction reaction, J. Mater. Chem. A, 3, 7659-7665 (2015). https://doi.org/10.1039/C4TA07035F
  50. P. Wu, Z. Cai, Y. Gao, H. Zhang, and C. Cai, Enhancing the electrochemical reduction of hydrogen peroxide based on nitrogen-doped graphene for measurement of its releasing process from living cells, Chem. Commun., 47, 11327-11329 (2011). https://doi.org/10.1039/c1cc14419g
  51. L. Sun, L. Wang, C. Tian, T. Tan, Y. Xie, K. Shi, M. Li, and H. Fu, Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage, RSC Adv., 2, 4498-4506 (2012). https://doi.org/10.1039/c2ra01367c
  52. Y. Su, Y. Zhang, X. Zhuang, S. Li, D. Wu, F. Zhang, and X. Feng, Low-temperature synthesis of nitrogen/sulfur co-doped three-dimensional graphene frameworks as efficient metal-free electrocatalyst for oxygen reduction reaction, Carbon, 62, 296-301 (2013). https://doi.org/10.1016/j.carbon.2013.05.067
  53. N. Li, Z. Wang, K. Zhao, Z. Shi, Z. Gu, and S. Xu, Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method, Carbon, 48(1), 255-259 (2010). https://doi.org/10.1016/j.carbon.2009.09.013
  54. Y. Zhou, N. Wang, J. Muhammad, D. Wang, Y. Duan, X. Zhang, X. Dong, and Z. Zhang, Graphene nanoflakes with optimized nitrogen doping fabricated by arc discharge as highly efficient absorbers toward microwave absorption, Carbon, 148, 204-213 (2019). https://doi.org/10.1016/j.carbon.2019.03.034
  55. L. S. Panchakarla, K. S. Subrahmanyam, S. K. Saha, A. Govindaraj, H. R. Krishnamurthy, U. V. Waghmare, and C. N. R. Rao, Synthesis, structure, and properties of boron- and nitrogen-doped graphene, Adv. Mater., 21(46), 4726-4730 (2009).
  56. T. V. Pham, J.-G. Kim, J. Y. Jung, J. H. Kim, H. Cho, T. H. Seo, H. Lee, N. D. Kim, and M. J. Kim, High areal capacitance of N-doped graphene synthesized by arc discharge, Adv. Funct. Mater., 29(48), 1905511 (2019). https://doi.org/10.1002/adfm.201905511
  57. C. Liu, X. Liu, J. Tan, Q. Wang, H. Wen, and C. Zhang, Nitrogen-doped graphene by all-solid-state ball-milling graphite with urea as a high-power lithium ion battery anode, J. Power Sources, 342, 157-164 (2017). https://doi.org/10.1016/j.jpowsour.2016.11.110
  58. I.-Y. Jeon, S. Zhang, L. Zhang, H.-J. Choi, J.-M. Seo, Z. Xia, L. Dai, and J.-B. Baek, Edgeselectively sulfurized graphene nanoplatelets as efficient metal-free electrocatalysts for oxygen reduction reaction: The electron spin effect, Adv. Mater., 25(42), 6138-6145 (2013). https://doi.org/10.1002/adma.201302753
  59. H. N. Tien and S. H. Hur, Synthesis of highly durable sulfur doped graphite nanoplatelet electrocatalyst by a fast and simple wet ball milling process, Mater. Lett., 161, 399-403 (2015). https://doi.org/10.1016/j.matlet.2015.08.139
  60. J. Xu, J. Shui, J. Wang, M. Wang, H.-K. Liu, S. X. Dou, I.-Y. Jeon, J.-M. Seo, J.-B. Baek, and L. Dai, Sulfur-graphene nanostructured cathodes via ball-milling for high-performance lithium-sulfur batteries, ACS Nano, 8, 10920-10930 (2014). https://doi.org/10.1021/nn5047585
  61. J. Xu, I.-Y. Jeon, J.-M. Seo, S. Dou, L. Dai, and J.-B. Baek, Edge-selectively halogenated graphene nanoplatelets (XGnPs, X = Cl, Br, or I) prepared by ball-milling and used as anode materials for lithium-ion batteries, Adv. Mater., 26(43), 7317-7323 (2014). https://doi.org/10.1002/adma.201402987
  62. X. Meng, C. Yu, X. Song, J. Iocozzia, J. Hong, M. Rager, H. Jin, S. Wang, L. Huang, J. Qiu, and Z. Lin, Scrutinizing defects and defect density of selenium-doped graphene for high-efficiency triiodide reduction in dye-sensitized solar cells, Angew. Chem., 130, 4772-4776 (2018). https://doi.org/10.1002/ange.201801337
  63. J. Ma, Y. Yuan, S. Wu, J. Y. Lee, and B. Kang, γ-Graphyne nanotubes as promising lithium-ion battery anodes, Appl. Surf. Sci., 531, 147343 (2020). https://doi.org/10.1016/j.apsusc.2020.147343
  64. Q. Zhang, C. Tang, W. Zhu, and C. Cheng, Strainenhanced Li storage and diffusion on the graphyne as the anode material in the Li-ion battery, J. Phys. Chem. C, 122(40), 22838-22848 (2018). https://doi.org/10.1021/acs.jpcc.8b05272
  65. B. Wu, X. Jia, Y. Wang, J. Hu,E. Gao, Z. Liu, Superflexible C68-graphyne as a promising anode material for lithium-ion batteries, J. Mater. Chem A, 7, 17357-17365 (2019). https://doi.org/10.1039/C9TA05955E
  66. X. Liu, S. M. Cho, S. Lin, Z. Chen, W. Choi, Y.-M. Kim, E. Yun, E. H. Baek, D. H. Ryu, and H. Lee, Constructing two-dimensional holey graphyne with unusual annulative π-extension, Matter, 5(7), 2306-2318 (2022) https://doi.org/10.1016/j.matt.2022.04.033