• 제목/요약/키워드: Normoxia

검색결과 70건 처리시간 0.024초

Hypoxia Enhances Nitric Oxide Synthesis by Upregulation of Inducible Nitric Oxide Synthase in Endothelial Cells

  • Rhee, Ki-Jong;Gwon, Sun-Yeong;Lee, Seunghyung
    • 대한의생명과학회지
    • /
    • 제19권3호
    • /
    • pp.180-187
    • /
    • 2013
  • Hypoxia is an integral part of the environment during luteolysis. In this study we examined whether hypoxia could directly stimulate endothelial cells to produce nitric oxide (NO). Endothelial cells were cultured in hypoxic (5% $O_2$) or normoxic (20% $O_2$) conditions and the levels of total NO, inducible NO and endothelial NO was measured. We found that hypoxia but not normoxia upregulated NO production. The increased NO levels correlated with increased inducible NO synthase (iNOS) expression whereas expression of endothelial NOS (eNOS) expression remained constant. Addition of the iNOS specific inhibitor 1400W to hypoxic cultures prevented NO production suggesting that hypoxia-induced NO production in endothelial cells was due mainly to upregulation of iNOS. We also found that prostaglandin $F_{2{\alpha}}$ (PGF) production was unaffected by hypoxia suggesting that upregulation of NO was not due to increased synthesis of PGF. In summary, we report that endothelial cells cultured under hypoxic conditions produce NO via the iNOS pathway. This study provides the importance of the relation between the hypoxic environment and the induction of NO by endothelial cells during regression of the corpus luteum in the ovary.

Loss of estrogen responsiveness under hypoxia occurs through hypoxia inducible factor-l induced proteasome-dependent down regulation of estrogen receptor

  • Cho, Jung-Yoon;Kim, Duk-Kyung;Lee, Young-Joo
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2003년도 Annual Meeting of KSAP : International Symposium on Pharmaceutical and Biomedical Sciences on Obesity
    • /
    • pp.70-70
    • /
    • 2003
  • Estrogen receptor is a ligand-activated transcription factor. Its action depends on the receptor, its ligand, and its coactivator proteins. As a consequence, the concentration of the receptor is a major component that governs the magnitude of the estrogen response. Despite the extensive knowledge on mechanism of estrogen receptor action, regulation of estrogen receptor itself is not very well understood. Estrogen receptor is known to be downregulated under hypoxia leading to inhibition of estrogen receptor mediated transcription activation. We have studied mechanism of loss of estrogen responsiveness under hypoxia. We found that Hif-l${\alpha}$, a major transcription factor regulating hypoxic response, inhibited transcription of estrogen response element driven luciferase gene by expression of HIF-l${\alpha}$/vp16 construct designed to contain transcription activity under normoxia. This loss of estrogen responsiveness appears to be the result of ER${\alpha}$ downregulation. ER${\alpha}$was downregulated at the levels of ligand-biding and protein within l2-24h, and the response was blocked by the proteasome inhibitor MG132, protein synthesis inhibitor cyclohexamide, and tyrosine kinase inhibitor Genistein. These results demonstrate that Hif-l${\alpha}$ downregulates ER${\alpha}$ by proteasome dependent pathway.

  • PDF

Functional Role of a Conserved Sequence Motif in the Oxygen-dependent Degradation Domain of Hypoxia-inducible Factor 1α in the Recognition of p53

  • Chi, Seung-Wook
    • Genomics & Informatics
    • /
    • 제6권2호
    • /
    • pp.72-76
    • /
    • 2008
  • Hypoxia-inducible factor $1{\alpha}\;(HIF1{\alpha})$ is a transcription factor that plays a key role in the adaptation of cells to low oxygen stress and oxygen homeostasis. The oxygen-dependent degradation (ODD) domain of $HIF1{\alpha}$ is responsible for the negative regulation of $HIF1{\alpha}$ in normoxia. The interactions of the $HIF1{\alpha}$ ODD domain with partner proteins such as von Hippel-Lindau tumor suppressor (pVHL) and p53 are mediated by two sequence motifs, the N- and C-terminal ODD(NODD and CODD). Multiple sequence alignment with $HIF1{\alpha}$ homologs from human, monkey, pig, rat, mouse, chicken, frog, and zebrafish has demonstrated that the NODD and CODD motifs have noticeably high conservation of the primary sequence across different species and isoforms. In this study, we carried out molecular dynamics simulation of the structure of the $HIF1{\alpha}$ CODD motif in complex with the p53 DNA-binding domain (DBD). The structure reveals specific functional roles of highly conserved residues in the CODD sequence motif of $HIF1{\alpha}$ for the recognition of p53.

배양 대뇌신경세포의 저당-저산소증 모델에서 우황청심원에 의한 세포사 방지 연구 (The Effect of Woohwangcheongsim-won for Delayed Neuronal Death in OGD(Oxygen-Glucose Deprivation) Model)

  • 원철환;정승현;신길조;문일수;이원철
    • 대한한의학회지
    • /
    • 제23권4호
    • /
    • pp.125-139
    • /
    • 2002
  • Objectives: The purpose of this investigation is to evaluate the effects of Woohwangcheongsim-won and to study the mechanism for neuronal death protection in OGD (oxygen-glucose deprivation) model with embryonic day 20 (E20) cortical cells of a rat (Sprague Dawley). Methods: E20 cortical cells were dissociated in neurobasal media and grown for 14 days in vitro (DIV). On 14 DIV, Woohwangcheongsim-won was added to the culture media for 72 hrs. On 17 DIV, cells were given an oxygen-glucose deprivation shock (2hrs and 4hrs) and further incubated in normoxia for another three days. On 20 DIV, Woohwangcheongsim-won's effects for neuronal death protection were evaluated by LDH assay and the mechanisms were studied by Bcl-2, Bak, Bax, caspase family. Results & Conclusions: 1. This study indicates that Woohwangcheongsim-won's effects for neuronal death protection in OGD model is confirmed by LDH assay in culture method of embryonic day 20(E20) cortical neuroblasts. 2. Woohwangcheongsim-won's mechanisms for neuronal death protection in OGD model are to restrain inflow of cytochrome c into cellularity caused by Bcl-2 increase (2hrs and 4hrs), to reduce the caspase cascade initiator caspase-8 (4hrs).

  • PDF

흰쥐 대뇌세포의 저산소증 모델에서 황련의 활성산소 생성 억제와 신경세포사 억제 (Suppression of Reactive Oxygen Species Production by Water-extracts of Coptidis Rhizoma Enhances Neuronal Survival in a Hypoxic Model of Cultured Rat Cortical Cells.)

  • 최주리;신길조;이원철;문일수;정승현
    • 생명과학회지
    • /
    • 제18권3호
    • /
    • pp.311-317
    • /
    • 2008
  • Pathophysiological oxidative stress results in neuronal cell death mainly due to the generation reactive oxygen species (ROS). In low oxygen situation such as hypoxia and ischemia, excessive ROS is generated. Coptidis Rhizoma (CR) is a traditional medicine used for the incipient stroke. In this report we show that CR water extracts $(1\;{\mu}g/ml)$ exhibited protective effects of neuronal cell death in a hypoxic model (2% $O_2/5%\;CO_2,\;37^{\circ}C,$ 3 hr) of cultured rat cortical cells. We further show that CR water extracts significantly reduced the intensity of green fluorescence after staining with $H_2DCF-DA$ on one hour and three days after hypoxic shock and in normoxia as well. Our results indicate that CR water extracts prevent neuronal death by suppressing ROS generation.

Backbone Resonance Assignment of a Proteolysis-Resistant Fragment in the Oxygen-Dependent Degradation Domain of the Hypoxia Inducible Factor 1α

  • Kim, Do-Hyoung;Lee, Si-Hyung;Chi, Seung-Wook;Nam, Ki Hoon;Han, Kyou-Hoon
    • Molecules and Cells
    • /
    • 제27권4호
    • /
    • pp.493-496
    • /
    • 2009
  • Hypoxia-inducible factor $1{\alpha}$ ($HIF1{\alpha}$) is a transcription factor that plays a key role in the adaptation of cells to low oxygen stress and oxygen homeostasis. The oxygen-dependent degradation (ODD) domain of $HIF1{\alpha}$ responsible for the negative regulation of $HIF1{\alpha}$ in normoxia is intrinsically unfolded. Here, we carried out the backbone $^1H$, $^{15}N$, and $^{13}C$ resonance assignment of a proteolysis-resistant fragment (residues 404-477) in the $HIF1{\alpha}$ ODD domain using NMR spectroscopy. About 98% (344/352) of all the $^1HN$, $^{15}N$, $^{13}C{\alpha}$, $^{13}C{\beta}$, and $^{13}CO$ resonances were unambiguously assigned. The results will be useful for further investigation of the structural and dynamic states of the $HIF1{\alpha}$ ODD domain and its interaction with binding partners.

HIF-1-Dependent Induction of Jumonji Domain-Containing Protein (JMJD) 3 under Hypoxic Conditions

  • Lee, Ho-Youl;Choi, Kang;Oh, Hookeun;Park, Young-Kwon;Park, Hyunsung
    • Molecules and Cells
    • /
    • 제37권1호
    • /
    • pp.43-50
    • /
    • 2014
  • Jumonji domain-containing proteins (JMJD) catalyze the oxidative demethylation of a methylated lysine residue of histones by using $O_2$, ${\alpha}$-ketoglutarate, vitamin C, and Fe(II). Several JMJDs are induced by hypoxic stress to compensate their presumed reduction in catalytic activity under hypoxia. In this study, we showed that an H3K27me3 specific histone demethylase, JMJD3 was induced by hypoxia-inducible factor (HIF)-$1{\alpha}/{\beta}$ under hypoxia and that treatment with Clioquinol, a HIF-$1{\alpha}$ activator, increased JMJD3 expression even under normoxia. Chromatin immunoprecipitation (ChIP) analyses showed that both HIF-$1{\alpha}$ and its dimerization partner HIF-$1{\beta}$/Arnt occupied the first intron region of the mouse JMJD3 gene, whereas the HIF-$1{\alpha}/{\beta}$ heterodimer bound to the upstream region of the human JMJD3, indicating that human and mouse JMJD3 have hypoxia-responsive regulatory regions in different locations. This study shows that both mouse and human JMJD3 are induced by HIF-1.

Hypoxic exposure can improve blood glycemic control in high-fat diet-induced obese mice.

  • Park, Yeram;Jang, Inkwon;Park, Hun-Young;Kim, Jisu;Lim, Kiwon
    • 운동영양학회지
    • /
    • 제24권1호
    • /
    • pp.19-23
    • /
    • 2020
  • [Purpose] Blood glucose and insulin resistance were lower following hypoxic exposure in previous studies. However, the effect of hypoxia as therapy in obese model has not been unknown. [Methods] Six-week-old mice were randomly divided into chow diet (n=10) and high-fat diet (HFD) groups (n=20). The chow diet group received a non-purified commercial diet (65 % carbohydrate, 21 % protein, and 14 % fat) and water ad libitum. The HFD group was fed an HFD (Research Diet, #D12492; 60% kcal from fat, 5.24 kcal/g). Both groups consumed their respective diet for 7 weeks. Subsequently, HFD-induced mice (12-weeks-old) were randomly divided into two treatment groups : HFD-Normoxia (HFD; n=10) and HFD-Hypoxia (HYP; n=10, fraction of inspired=14.6%). After treatment for 4 weeks, serum glucose, insulin and oral glucose tolerance tests (OGTT) were performed. [Results] Homeostatic model assessment values for insulin resistance (HOMA-IR) of the HYP group tended to be lower than the HFD group. Regarding the OGTT, the area under the curve was 13% lower for the HYP group than the HFD group. [Conclusion] Insulin resistance tended to be lower and glucose uptake capacity was significantly augmented under hypoxia. From a clinical perspective, exposure to hypoxia may be a practical method of treating obesity.

General anesthesia using propofol infusion for implantation of an implantable cardioverter defibrillator in a pediatric patient with Andersen-Tawil syndrome: a case report

  • Seyeon Park;Wonjae Heo;Sang-Wook Shin;Hye-Jin Kim;Yeong Min Yoo;Hee Young Kim
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • 제23권1호
    • /
    • pp.45-51
    • /
    • 2023
  • Andersen-Tawil syndrome (ATS) is a rare genetic disease characterized by a triad of episodic flaccid muscle weakness, ventricular arrhythmias, and physical anomalies. ATS patients have various cardiac arrhythmias that can cause sudden death. Implantation of an implantable cardioverter-defibrillator (ICD) is required when life-threatening cardiac arrhythmias do not respond to medical treatment. An 11-year-old girl underwent surgery for an ICD implantation. For general anesthesia in ATS patients, anesthesiologists should focus on the potentially difficult airway, serious cardiac arrhythmias, such as ventricular tachycardia (VT), and delayed recovery from neuromuscular blockade. We followed the difficult airway algorithm, avoided drugs that can precipitate QT prolongation and fatal cardiac arrhythmias, and tried to maintain normoxia, normocarbia, normothermia, normoglycemia, and pain control for prevention of sympathetic stimulation. We report the successful application of general anesthesia for ICD implantation in a pediatric patient with ATS and recurrent VT.

흰쥐 폐동맥의 내피세포의존성 혈관이완과 급성 저산소성 폐동맥수축에서 산화질소의 역할 (A Study of Endothelium-dependent Pulmonary Arterial Relaxation and the Role of Nitric oxide on Acute Hypoxic Pulmonary Vasoconstriction in Rats)

  • 인광호;이진구;조재연;심재정;강경호;유세화
    • Tuberculosis and Respiratory Diseases
    • /
    • 제41권3호
    • /
    • pp.231-238
    • /
    • 1994
  • 연구배경: 저산소증에 의한 폐동맥수축의 기전은 저산소증 자체가 폐혈관 평활근에 직접 작용하여 수축을 유발한다는 것과, 저산소증에 의해 조직으로 부터 여러 매개물질이 유리되어 혈관평활근을 수축시킨다는 설이 제시되고 있지만 정확히 밝혀져있지 않다. 최근에는 저산소증이 EDRF의 생성을 억제하여 혈관수축을 유발시킨다고하여 관심이 되고 있다. 본 연구에서는 흰쥐 폐동맥에서 내피세포 의존형 혈관이완을 조사하고, 저산소증에 의한 폐동맥수축에 EDRF의 작용을 조사하였다. 방법 : 300~350g의 수컷 흰쥐(Sprague Dawley)의 폐동맥을 박리하여 길이가 2mm되는 폐동맥고리를 Krebs용액으로 채워져 있으며, 95% $O_2$/5% $CO_2$(산소상태)와 95% $N_2$/5% $CO_2$(저산소상태)가 각각 공급되는 magnus관에서 가는 stainless 갈고리로 고정한 다음 Gilson사의 polygraph에 부착된 isometric transducer(FT.03 Grass, Quincy, USA)에 의해 등장성 수축곡선을 그리도록 장치하였다. 결과: 1) 내피세포가 있는 폐동맥에서 PE($10^{-6}M$)에 의한 혈관수축은 Ach($10^{-9}-10^{-5}M$) 및 SN($10^{-9}-10^{-5}M$)의 농도에 비례해서 이완되어 거의 기초장력까지 이완되었으나, 내피세포를 제거한 폐동맥에서는 Ach($10^{-9}-10^{-5}M$)에 의한 혈관이완은 거의 상실되었다. 2) L-NMMA($10^{-4}M$)으로 전처치한 경우 Ach($10^{-9}-10^{-5}M$)에 의한 혈관이완은 전처치하지 않은 경우보다 의미있게 감소하였다. 3) L-arginine($10^{-4}M$)과 L-NMMA($10^{-4}M$)을 전처치 하였을 경우 Ach($10^{-9}-10^{-5}M$)에 의한 혈관이완은 L-NMMA에 의해 거의 영향을 받지 않았다. 4) PE($10^{-6}M$)에 의한 폐동맥 수축은 산소상태보다 저산소 상태에서 훨씬 강했으며, Ach($10^{-9}-10^{-5}M$)에 의한 혈관이완은 산소상태보다 저산소상태에서 의미있게 감소하였다. 5) L-arginine($10^{-4}M$)을 전처치 하였을 경우 저산소상태에서의 Ach($10^{-9}-10^{-5}M$)에 의한 혈관이완은 산소상태에서의 Ach 에 의한 혈관이완 정도로 회복되었다. 결론: 흰쥐 폐동맥에서 내피세포의존성 혈관이완은 NO가 관여하며, 저산소증에 의한 폐동맥 수축은 내피세포내의 EDRF 생성의 저하와 관련이 있을 것으로 사료된다.

  • PDF