• 제목/요약/키워드: Normal learning

검색결과 810건 처리시간 0.028초

Evaluation of the Femoral Stem Implant in Canine Total Hip Arthroplasty: A Cadaver Study

  • Cho, Hyoung Sun;Kwon, Yonghwan;Kim, Young-Ung;Kang, Jin-Su;Lee, Kichang;Kim, Namsoo;Kim, Min Su
    • 한국임상수의학회지
    • /
    • 제36권1호
    • /
    • pp.53-61
    • /
    • 2019
  • Total hip arthroplasty (THA) is a successful surgical treatment for both patients with chronical lameness and dogs who are nonresponsive to medical treatments, providing excellent joint function for returning dogs to the normal gait in 80% to 98% of hip dysplasia (HD) patients. The THA surgical implant system manufactured by BioMedtrix and Kyon are today widely accepted. When comparing the BioMedtrix biological fixation (BFX) system to the BioMedtrix cemented fixation (CFX) system, the many advantages of BFX, which include longer potential implant life, decreased risk of postoperative or later infection, and better implant stability, become evident. However, BFX implies a greater risk of femoral fracture during reaming and requires a more precise surgical technique to achieve good implant fit, given the press-fit nature of cementless THA. The purposes of this study are to both describe the mistakes and complications during stem implantation for beginner surgeons with both the BFX and the CFX systems and to document the initial result of 12 implantations in canine cadavers. Given the detailed evaluations of 3 specialists, who are Diplomate American College of Veterinary Surgeons (DACVS), only 3 of 11 stems were appropriately sized. Specifically, 6 stems were anteverted rather than being retroverted; further, although 7 stems were coaxial with the femoral long axis in the frontal plane, the other stems were in the varus at the frontal plane, with the proximal medial stem adjacent to the medial femoral cortex. Moderate angulation from the cranial to the caudal directions was found in 4 cases in the sagittal plane. Additionally, 1 case of femoral fissure and 1 case of perforated femoral cortex were reported. It is not easy for surgeons performing cementless THA for the first time to achieve a good result, even though they completed an educational course about it and given that catastrophic complications often occurred during early surgical clinical cases. Therefore, ex-vivo studies are sincerely required to get an expertise by rehearsing the preparation of the femoral envelop in isolated bones. Further studies should be conducted to achieve both highly accurate implant size and correct orientation during the preoperative planning. Additionally, surgeons' learning curve should be examined in future investigations.

그림책을 활용한 유아수학교육 학습 경험이 예비 유아교사의 수학에 대한 태도와 수학교수효능감에 미치는 영향 (The Effects of Experience of Studying Mathematics Education for Young Children Based on Picture Books on Pre-service Early Childhood Teachers with Their Attitude Toward Mathematics and Mathematics Teaching Efficiency)

  • 이선경
    • 한국보육학회지
    • /
    • 제19권2호
    • /
    • pp.19-33
    • /
    • 2019
  • 본 연구의 목적은 그림책을 활용한 유아수학교육학습 경험이 예비유아교사의 수학에 대한 태도와 수학교수효능감에 미치는 영향을 알아보는 데 있다. 이를 위해 G광역시에 소재한 S대학교에 재학 중인 예비유아교사 39명을 연구대상으로 하여 실험집단 20명 통제집단 19명을 임의 배정하였다. 실험집단은 15주 동안 그림책에 기초한 유아수학교육 수업을 진행하였으며, 통제집단은 동일한 기간 동안 일반적인 유아수학교육 수업을 진행하였다. 수집된 자료는 SPSS 18.0 프로그램을 활용하여 수학에 대한 태도와 수학교수효능감의 결과 차이에 대한 t-검증을 실시하였다. 본 연구의 결과는 다음과 같다. 첫째, 그림책을 활용한 유아수학교육 학습 경험은 예비유아교사의 수학에 대한 태도에 긍정적인 영향을 미쳤으며, 수학에 대한 가치와 흥미를 증진시키고 수학에 대한 불안을 감소시키는 효과가 나타났다. 둘째, 그림책을 활용한 유아수학교육 학습 경험은 예비유아교사의 수학교수효능감 향상에 긍정적인 영향을 미쳤으며, 능력에 대한 신념과 결과에 대한 신념 모두 유의하게 향상되었다. 이러한 결과는 그림책을 활용한 유아수학교육 학습 경험이 예비유아교사의 수학에 대한 태도와 수학교수효능감을 향상시키는데 효과적인 교수학습 방법임을 시사한다.

White striping degree assessment using computer vision system and consumer acceptance test

  • Kato, Talita;Mastelini, Saulo Martiello;Campos, Gabriel Fillipe Centini;Barbon, Ana Paula Ayub da Costa;Prudencio, Sandra Helena;Shimokomaki, Massami;Soares, Adriana Lourenco;Barbon, Sylvio Jr.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권7호
    • /
    • pp.1015-1026
    • /
    • 2019
  • Objective: The objective of this study was to evaluate three different degrees of white striping (WS) addressing their automatic assessment and customer acceptance. The WS classification was performed based on a computer vision system (CVS), exploring different machine learning (ML) algorithms and the most important image features. Moreover, it was verified by consumer acceptance and purchase intent. Methods: The samples for image analysis were classified by trained specialists, according to severity degrees regarding visual and firmness aspects. Samples were obtained with a digital camera, and 25 features were extracted from these images. ML algorithms were applied aiming to induce a model capable of classifying the samples into three severity degrees. In addition, two sensory analyses were performed: 75 samples properly grilled were used for the first sensory test, and 9 photos for the second. All tests were performed using a 10-cm hybrid hedonic scale (acceptance test) and a 5-point scale (purchase intention). Results: The information gain metric ranked 13 attributes. However, just one type of image feature was not enough to describe the phenomenon. The classification models support vector machine, fuzzy-W, and random forest showed the best results with similar general accuracy (86.4%). The worst performance was obtained by multilayer perceptron (70.9%) with the high error rate in normal (NORM) sample predictions. The sensory analysis of acceptance verified that WS myopathy negatively affects the texture of the broiler breast fillets when grilled and the appearance attribute of the raw samples, which influenced the purchase intention scores of raw samples. Conclusion: The proposed system has proved to be adequate (fast and accurate) for the classification of WS samples. The sensory analysis of acceptance showed that WS myopathy negatively affects the tenderness of the broiler breast fillets when grilled, while the appearance attribute of the raw samples eventually influenced purchase intentions.

신경병증성 통증의 처리 과정에 있어 중추신경계의 가소성 변화 비교 (Comparisons of the Plastic Changes in the Central Nervous System in the Processing of Neuropathic Pain)

  • 권민지
    • 감성과학
    • /
    • 제24권2호
    • /
    • pp.39-48
    • /
    • 2021
  • 국제통증연구학회(IASP)에 따르면, 신경병증성 통증은 정상 조건에서 중추신경계에 유해한 정보를 전달하는 신경계 기능 장애로 특징 지워진다. 이런 통증은 말초 혹은 중추 신경계에 확인 가능한 병변이 있는 질환과 어떠한 신경에도 병변이 없는 상태에서 발생하는 상황으로 나누어 볼 수 있다. 두 가지 상황 모두 장기적이고 만성적인 변화과정을 겪게 되며, 결과적으로 신경계가 부적절하게 적응하여 치유되기 어려운 만성통증 증후군으로 발전할 수 있다. 그러나 이러한 통증 치료는 진단에서부터 치료까지의 과정이 어려운 탓에 현재까지도 특별한 해결방안이 부족한 실정이다. 최근 자기공명영상(fMRI), 양전자방출단층촬영법(PET), 광영상(optical imaging) 등 영상분석기술이 발달함에 따라 통증을 유발할 수 있는 유해 자극에 대한 중추신경계의 반응을 영상화하는 연구가 증가하고 있다. 이러한 영상 기법들을 통해 통증을 해석하고 처리하는 뇌 영역에서 시냅스 간 가소성 변화가 일어나고 있음을 확인하였으며, 신경병증성 통증을 비롯한 만성통증과 학습과의 상호 작용을 이해하는 데 많은 도움을 주고 있다. 본 연구는 병리적 통증의 기전과 통증 자극에 따른 뇌의 구조적, 기능적 변화에 대해 최근까지 밝혀진 연구들을 소개하고자 한다. 만성적 통증의 정의와 발생기전을 되짚고 새로운 연구 동향을 살펴보는 것은 통증을 완화할 수 있는 방안을 강구하는 데 도움이 될 것으로 사료된다.

무선 센서 네트워크에서 클러스터링 기반 Sleep Deprivation Attack 탐지 모델 (Sleep Deprivation Attack Detection Based on Clustering in Wireless Sensor Network)

  • 김숙영;문종섭
    • 정보보호학회논문지
    • /
    • 제31권1호
    • /
    • pp.83-97
    • /
    • 2021
  • 무선 센서 네트워크를 구성하는 무선 센서는 일반적으로 전력 및 자원이 극히 제한적이다. 무선 센서는 전력을 보존하기 위해 일정 주기마다 sleep 상태로 진입한다. Sleep deprivation attack은 무선 센서의 sleep 상태 진입을 막음으로써 전력을 소진 시키는 치명적인 공격이지만 이에 대한 뚜렷한 대응책이 없다. 이에 본 논문에서는 클러스터링 기반 이진 탐색 트리 구조의 Sleep deprivation attack 탐지 모델을 제안한다. 본 논문에서 제안하는 sleep deprivation attack 탐지 모델은 기계학습을 통해 분류한 공격 센서 노드와 정상 센서 노드의 특징을 사용한다. 이때 탐지 모델에 사용한 특징은 Long Short-Term Memory(LSTM), Decision Tree(DT), Support Vector Machine(SVM), K-Nearest Neighbor(K-NN)을 이용하여 결정하였다. 결정된 특징은 본 논문에서 제안한 알고리즘에 사용하여 공격 탐지를 위한 값들을 계산하였으며, 계산한 값을 판정하기 위한 임계값은 SVM을 적용하여 도출하였다. 본 논문에서 제안하는 탐지 모델은 기계학습으로 도출된 특징과 임계값을 본 논문에서 제안한 탐지 알고리즘에 적용하여 구성하였으며, 실험을 통해 전체 센서 노드 20개 중 공격 센서 노드의 비율이 0.35일 때 94%의 탐지율을 갖고 평균 에너지 잔량은 기존 연구보다 최대 26% 향상된 결과를 보였다.

알려지지 않은 위협 탐지를 위한 CBA와 OCSVM 기반 하이브리드 침입 탐지 시스템 (A hybrid intrusion detection system based on CBA and OCSVM for unknown threat detection)

  • 신건윤;김동욱;윤지영;김상수;한명묵
    • 인터넷정보학회논문지
    • /
    • 제22권3호
    • /
    • pp.27-35
    • /
    • 2021
  • 인터넷이 발달함에 따라, IoT, 클라우드 등과 같은 다양한 IT 기술들이 개발되었고, 이러한 기술들을 사용하여 국가와 여러 기업들에서는 다양한 시스템을 구축하였다. 해당 시스템들은 방대한 양의 데이터들을 생성하고, 공유하기 때문에 시스템에 들어있는 중요한 데이터들을 보호하기 위해 위협을 탐지할 수 있는 다양한 시스템이 필요하였으며, 이에 대한 연구가 현재까지 활발히 진행되고 있다. 대표적인 기술로 이상 탐지와 오용 탐지를 들 수 있으며, 해당 기술들은 기존에 알려진 위협이나 정상과는 다른 행동을 보이는 위협들을 탐지한다. 하지만 IT 기술이 발전함에 따라 시스템을 위협하는 기술들도 점차 발전되고 있으며, 이러한 탐지 방법들을 피해서 위협을 가한다. 지능형 지속 위협(Advanced Persistent Threat : APT)은 국가 또는 기업의 시스템을 공격하여 중요 정보 탈취 및 시스템 다운 등의 공격을 수행하며, 이러한 공격에는 기존에 알려지지 않았던 악성코드 및 공격 기술들을 적용한 위협이 존재한다. 따라서 본 논문에서는 알려지지 않은 위협을 탐지하기 위한 이상 탐지와 오용 탐지를 결합한 하이브리드 침입 탐지 시스템을 제안한다. 두 가지 탐지 기술을 적용하여 알려진 위협과 알려지지 않은 위협에 대한 탐지가 가능하게 하였으며, 기계학습을 적용함으로써 보다 정확한 위협 탐지가 가능하게 된다. 오용 탐지에서는 Classification based on Association Rule(CBA)를 적용하여 알려진 위협에 대한 규칙을 생성하였으며, 이상 탐지에서는 One Class SVM(OCSVM)을 사용하여 알려지지 않은 위협을 탐지하였다. 실험 결과, 알려지지 않은 위협 탐지 정확도는 약 94%로 나타난 것을 확인하였고, 하이브리드 침입 탐지를 통해 알려지지 않은 위협을 탐지 할 수 있는 것을 확인하였다.

세종시 학교감염병 중 3대 바이러스성 감염병의 분포특성에 관한 연구 (A Study on the Distribution Characteristics of Three Major Virus Infectious Diseases among School Infectious Diseases in Sejong City)

  • 방은옥
    • 한국콘텐츠학회논문지
    • /
    • 제21권3호
    • /
    • pp.561-566
    • /
    • 2021
  • 학교는 감염병 발생 시 광범위하게 확산될 우려가 높은 집단이며, 학생들의 건강과 학습권을 저해할 수 있으므로 체계적인 관리와 신속한 대응이 필요하다. 본 연구는 초·중·고 학생들에게 흔히 발생하는 감염병의 현황을 파악하여 감염병의 위협으로부터 학생과 교직원을 보호하고 정상적인 학교 기능을 유지하기 위한 기초자료를 제공하기 위해 실시하였으며, 조사 대상으로는 세종시를 선정하였다. 3대 감염병은 인플루엔자, 수두, 수족구병으로서, 3대 감염병 모두 급성 바이러스성 감염병으로 분류되며 전파속도가 빠르고 전파력이 강한 특징이 있어 집단 생활을 하는 학생들에게는 치명적인 결과를 초래할 수 있다. 연구자료는 교육부 교육행정정보망인 나이스(NEIS)의 2019년도 감염병 보고자료를 활용하였고, 전국 초·중·고등학교에서 매주 보고된 현황 자료를 활용하여 분석하였으며, 연구방법으로는 전국과 세종시 감염병 발생 현황 비교, 각 학교급별 발생 현황 비교, 감염병 항목별 발생 현황 비교, 시기별 감염병 현황 분석을 실시하였다. 3대 감염병 발생 현황 조사 결과는 세종시 뿐만 아니라 전국 학교감염병의 감염병을 관리하는데 기초자료로 사용되어, 향후 학교감염병 관리 대책 수립에 활용할 수 있도록 기대한다.

계층적 군집분석을 이용한 반도체 웨이퍼의 불량 및 불량 패턴 탐지 (Wafer bin map failure pattern recognition using hierarchical clustering)

  • 정주원;정윤서
    • 응용통계연구
    • /
    • 제35권3호
    • /
    • pp.407-419
    • /
    • 2022
  • 반도체는 제조 공정이 복잡하고 길어 결함이 발생될 때 빠른 탐지와 조치가 이뤄져야 결함으로 인한 손실을 최소화할 수 있다. 테스트 공정을 거쳐 구성된 웨이퍼 빈 맵(WBM)의 체계적인 패턴을 탐지하고 분류함으로써 문제의 원인을 유추할 수 있다. 이 작업은 수작업으로 이뤄지기 때문에 대량의 웨이퍼를 단 시간에 처리하는 데 한계가 있다. 본 논문은 웨이퍼 빈 맵의 정상 여부를 구분하기 위해 계층적 군집 분석을 활용한 새로운 결함 패턴 탐지 방법을 제시한다. 제시하는 방법은 여러 장점이 있다. 군집의 수를 알 필요가 없으며 군집분석의 조율 모수가 적고 직관적이다. 동일한 크기의 웨이퍼와 다이(die)에서는 동일한 조율 모수를 가지므로 대량의 웨이퍼도 빠르게 결함을 탐지할 수 있다. 소량의 결함 데이터만 있어도 그리고 데이터의 결함비율을 가정하지 않더라도 기계학습 모형을 훈련할 수 있다. 제조 특성상 결함 데이터는 구하기 어렵고 결함의 비율이 수시로 바뀔 수 있기 때문에 필요하다. 또한 신규 패턴 발생시에도 안정적으로 탐지한다. 대만 반도체 기업에서 공개한 실제 웨이퍼 빈 맵 데이터(WM-811K)로 실험하였다. 계층적 군집 분석을 이용한 결함 패턴탐지는 불량의 재현율이 96.31%로 기존의 공간 필터(spatial filter)보다 우수함을 보여준다. 결함 분류는 혼합 유형에 장점이 있는 계층적 군집 분석을 그대로 사용한다. 직선형과 곡선형의 긁힘(scratch) 결함의 특징에 각각 주성분 분석의 고유값과 2차 다항식의 결정계수를 이용하고 랜덤 포레스트 분류기를 이용한다.

다양한 데이터 전처리 기법 기반 침입탐지 시스템의 이상탐지 정확도 비교 연구 (Comparative Study of Anomaly Detection Accuracy of Intrusion Detection Systems Based on Various Data Preprocessing Techniques)

  • 박경선;김강석
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권11호
    • /
    • pp.449-456
    • /
    • 2021
  • 침입 탐지 시스템(IDS: Intrusion Detection System)은 보안을 침해하는 이상 행위를 탐지하는 기술로서 비정상적인 조작을 탐지하고 시스템 공격을 방지한다. 기존의 침입탐지 시스템은 트래픽 패턴을 통계 기반으로 분석하여 설계하였다. 그러나 급속도로 성장하는 기술에 의해 현대의 시스템은 다양한 트래픽을 생성하기 때문에 기존의 방법은 한계점이 명확해졌다. 이런 한계점을 극복하기 위해 다양한 기계학습 기법을 적용한 침입탐지 방법의 연구가 활발히 진행되고 있다. 본 논문에서는 다양한 네트워크 환경의 트래픽을 시뮬레이션 장비에서 생성한 NGIDS-DS(Next Generation IDS Dataset)를 이용하여 이상(Anomaly) 탐지 정확도를 높일 수 있는 데이터 전처리 기법에 관한 비교 연구를 진행하였다. 데이터 전처리로 패딩(Padding)과 슬라이딩 윈도우(Sliding Window)를 사용하였고, 정상 데이터 비율과 이상 데이터 비율의 불균형 문제를 해결하기 위해 AAE(Adversarial Auto-Encoder)를 적용한 오버샘플링 기법 등을 적용하였다. 또한, 전처리된 시퀀스 데이터의 특징벡터를 추출할 수 있는 Word2Vec 기법 중 Skip-gram을 이용하여 탐지 정확도의 성능 향상을 확인하였다. 비교실험을 위한 모델로는 PCA-SVM과 GRU를 사용하였고, 실험 결과는 슬라이딩 윈도우, Skip-gram, AAE, GRU를 적용하였을 때, 더 좋은 성능을 보였다.

패킷 카운팅을 이용한 DoS/DDoS 공격 탐지 알고리즘 및 이를 이용한 시스템 (DoS/DDoS attacks Detection Algorithm and System using Packet Counting)

  • 김태원;정재일;이주영
    • 한국시뮬레이션학회논문지
    • /
    • 제19권4호
    • /
    • pp.151-159
    • /
    • 2010
  • 인터넷은 이제 일상생활에서 떼어놓을 수 없는 생활의 일부가 되었다. 그러나 인터넷은 애초에 보안의 개념 없이 만들어졌기 때문에 악의적인 사용자가 네트워크를 통해 시스템에 침투하여 시스템을 마비시키거나 개인정보를 탈취하는 문제들이 커다란 사회적 이슈가 되고 있다. 또한 최근 평범한 일반 사람들도 네트워크 공격 툴 사용으로 인한 DoS 공격이 가능해짐에 따라 인터넷 환경에서 큰 위협을 주고 있다. 그러므로 효율적이고 강력한 공격 탐지 시스템이 인터넷 환경에서 매우 중요하게 되었다. 그러나 이러한 공격을 완벽하게 막아내는 것은 매우 어려운 일이다. 본 논문에서는 DoS 공격의 탐지를 위한 알고리즘을 제안하고, 이를 이용한 공격탐지도구를 제시한다. 먼저 정상상태에서의 학습단계를 거쳐서, 학습된 임계치 허용량, 각 포트로 유입되는 패킷의 개수, 중간값 그리고 각 포트별 평균사용률을 계산하고, 이 값을 바탕으로 공격탐지가 이루어지는 3단계 판별 방법을 제안하였다. 제안한 방법에 맞는 공격 탐지 도구를 제작하여 실험을 하였으며, 그 결과 각 포트별 평균사용률과 단위 시간당 패킷량 중간값의 차이와 학습된 임계치 허용량의 비교는 공격 탐지에 효율적임을 알 수 있다. 또한 네트워크 데이터를 들여다 볼 필요 없이, 패킷의 개수만을 이용하여 공격을 탐지함으로써 간단히 구현할 수 있음을 알 수 있다.