Browse > Article
http://dx.doi.org/10.14695/KJSOS.2021.24.2.39

Comparisons of the Plastic Changes in the Central Nervous System in the Processing of Neuropathic Pain  

Kwon, Minjee (경일대학교 간호학과)
Publication Information
Science of Emotion and Sensibility / v.24, no.2, 2021 , pp. 39-48 More about this Journal
Abstract
According to International Associating for the Study of Pain (IASP) definition, neuropathic pain is a disorder characterized by dysfunction of the nervous system that, under normal conditions, mediates virulent information to the central nervous system (CNS). This pain can be divided into a disease with provable lesions in the peripheral or central nervous system and states with an incorporeal lesion of any nerves. Both conditions undergo long-term and chronic processes of change, which can eventually develop into chronic pain syndrome, that is, nervous system is inappropriately adapted and difficult to heal. However, the treatment of neuropathic pain itself is incurable from diagnosis to treatment process, and there is still a lack of notable solutions. Recently, several studies have observed the responses of CNS to harmful stimuli using image analysis technologies, such as functional magnetic resonance imaging (fMRI), positron emission tomography (PET), and optical imaging. These techniques have confirmed that the change in synaptic-plasticity was generated in brain regions which perceive and handle pain information. Furthermore, these techniques helped in understanding the interaction of learning mechanisms and chronic pain, including neuropathic pain. The study aims to describe recent findings that revealed the mechanisms of pathological pain and the structural and functional changes in the brain. Reflecting on the definition of chronic pain and inspecting the latest reports will help develop approaches to alleviate pain.
Keywords
Neuropathic Pain; Pain Mechanism; Plasticity; Pain Matrix; Pain Management;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lee, Y. (2002). Neuropathic pain. Inje Medical Journal, 23(5), 171-174.
2 Williams, A. C. De. C., & Craig, K. D. (2016). Updating the definition of pain. Pain, 157(11), 2420-2423.   DOI
3 Yang, G., Pan, F., & Gan, W. -B. (2009). Stably maintained dendritic spines are associated with lifelong memories. Nature, 17, 462(7275), 920-924.   DOI
4 Johansen, J. P., & Fields, H. L. (2004). Glutamatergic activation of anterior cingulate cortex produces an aversive teaching signal. Nature Neuroscience, 7(4), 398-403.   DOI
5 Kim, J., & Lee, M. (2013). Validity evidences of VAS pain scale utilizing objective physical activity measures in middle-aged females with low-back pain. Korean Journal of Measurement and Education in Physical and Sport Science, 15(2), 29-39.
6 Kukkar, A., Bali, A., Singh, N., & Jaggi, A. S. (2013). Implications and mechanisms of action of gabapentin in neuropathic pain. Archives of Pharmacal Research, 36(3), 237-251.   DOI
7 Lee, B. H., Won, R., Baik, E. J., Lee, S. H., & Moon, C. H. (2000). An animal model of neuropathic pain employing injury to the sciatic nerve branches. Neuroreport, 11(4), 657-661.   DOI
8 Herr, K., Coyne, P., McCaffery, M., Manworren, R., & Merkel, S. (2011). Pain assessment in the patient unable to self-report: Position statement with clinical practice recommendations. Pain Management Nursing, 12(4), 230-250.   DOI
9 Um, S. W., Kim, M. J., Leem, J. W., Bai, S. J., & Lee, B. H. (2019). Pain-relieving effects of mTOR inhibitor in the anterior cingulate cortex of neuropathic rats. Molecular Neurobiology, 56, 2482-2494.   DOI
10 Tabata, M., Terayama, R., Maruhama, K., lida, S., & Sugimoto, T. (2018). Differential induction of c-Fos and phosphorylated ERK by a noxious stimulus after peripheral nerve injury. International Journal of Neuroscience, 128(3), 208-218.   DOI
11 Craig, A. D. (2014). Topographically organized projection to posterior insular cortex from the posterior portion of the ventral medial nucleus in the long-tailed macaque monkey. Journal of Comparative Neurology, 522(1), 36-63.   DOI
12 Kaang, B. K. (2001). Memory and Synaptic Plasticity. Korean Journal of Brain Science and Technology, 1(1), 13-24.
13 Bird, G. C., Lash, L. L., Han, J. S., Zou, X., Willis, W. D., & Neugebauer, V. (2005). Protein kinase A-dependent enhanced NMDA receptor function in pain-related synaptic plasticity in rat amygdala neurons. Journal of Physiology, 564(3), 907-921.   DOI
14 Qu, C., King, T., Okun, A., Lai, J., Fields, H.L., & Porreca, F. (2011). Lesion of the rostral anterior cingulate cortex eliminates the aversiveness of spontaneous neuropathic pain following partial or complete axotomy. Pain, 152(7), 1641-1648.   DOI
15 Kohno, T., Ji, R. R., Ito, N., Allchorne, A. J., Befort, K., Karchewski, L. A., & Woolf, C. J. (2005). Peripheral axonal injury results in reduced mu opioid receptor pre- and post- synaptic action in the spinal cord. Pain, 117(1-2), 77-87.   DOI
16 Mutso, A. A., Radzicki, D., Baliki, M. N., Huang, L., Banisadr, G., Centeno, M. V., Radulovic, J., Martina, M., Miller, R. J., & Apkarian, A. V. (2012) Abnormalities in hippocampal functioning with persistent pain. Journal of Neuroscience, 32(17), 5747-5756.   DOI
17 Sirianni, J., Ibrahim, M., & Patwardhan, A. (2015). Chronic pain syndromes, mechanisms, and current treatments. Progress in Molecular Biology and Translational Science, 131, 565-611.   DOI
18 Cho, S. H., Ahn, Y. W., Ok, S. M., Huh, J. Y., Ko, M. Y., & Jeong, S. H. (2011). Pharmacotherapy in neuropathic pains: Evidence-based approach. Journal of Oral Medicine and Pain, 36(2), 139-146.   DOI
19 Choi, Y. J., & Yoon, S. Y. (2014). Neuroaesthetics: A concise review of the evidence aimed at aesthetically sensible design. Science of Emotion & Sensibility, 17(2), 44-54.
20 Craig, A. D., Chen, K., Bandy, D., & Reiman, E. M. (2000). Thermosensory activation of insular cortex. Nature Neuroscience, 3(2), 184-190.   DOI
21 Samineni, V. K., Prenkumar, L. S., & Faingold, C. L. (2017). Neuropathic pain-induced enhancement of spontaneous and pain-evoked neuronal activity in the periaqueductal gray that is attenuated by gabapentin. Pain, 158(7), 1241-1253.   DOI
22 Dedosterd, I., & Woolf C. J. (2000). Spared nerve injury: An animal model of persistent peripheral neuroapthic pain. Pain, 87, 149-158.   DOI
23 Peyron, R., Larrea, L. G., Gregoire, M. C., Convers, P., Richard, A., Lavenne, F., Barral, F. G., Mauguiere, F., Michel, D., & Laurent, B. (2000). Parietal and cingulate process in central pain. a combined postiron emission tomography (PET) and functional magnetic resonance imaging (fMRI) study of an unusual case. Pain, 84(1), 77-87.   DOI
24 Peyron, R., Laurent, B., & Garcia-Larrea, L. (2000). Functional imaging of brain responses to pain. a review and meta-analysis. Clinical Neurophysiology, 30, 263-88.   DOI
25 Scholz, J., & Woolf, C. J. (2007). The neuropathic pain triad: Neuron, immune cells and glia. Nature Neuroscience, 10, 1361-1368.   DOI
26 Schweinhardt, P., Glynn, C., Brooks, J., McQuay, H., Jack, T., Chessell, I., Bountra, C., & Tracey, I. (2006). An fMRI study of cerebral processing of brush-evoked allodynia in neuropathic pain patients. Neuroimage, 32, 256-265.   DOI
27 Seltzer, Z., Dubner, R., & Shir, Y. (1990). A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain, 43, 205-218.   DOI
28 Thacker, M. A., Clark, A. K., Marchand, F., & McMahon S. B. (2007). Pathophysiology of peripheral neuropathic pain: Immune cells and molecules. Anesthesia and Analgesia, 105(3), 838-47.   DOI
29 Wager, T. D., Atlas, L. Y., Lindquist, M. A., Roy, M., Woo, C. W., & Kross, E. (2013). An fMRI-based neurologic signature of physical pain. New England Journal of Medicine, 368(15), 1388-1397.   DOI
30 Tsuda, M., Koga, K., Chen, T., & Zhuo, M. (2017). Neuronal and microglial mechanisms for neuropathic pain in the spinal dorsal horn and anterior cingulate cortex. Journal of Neurochemistry, 141(4), 486-498.   DOI
31 Dzau, V. J., & Pizzo, P. A. (2014). Relieving pain in America:Insights from an Institute of Medicine Committee. Journal of the American Medical Association, 312, 1507-1508.   DOI
32 Casey, K. L. (1999). Forebrain mechanisms of nociception and pain: Analysis through imaging. Proceedings of the National Academy of Science of the United States of America, 96(14), 7668-7674.   DOI
33 American Pain Society Quality of Care Committee. (1995). Quality improvement guidelines for the threatment of acute pain and cancer pain, JAMA, 274(23), 1874-1880. DOI: 10.1001/jama.1995.03530230060032   DOI
34 Brennan, F. (2015). The US Congressional "Decade on Pain Control and Research" 2001-2011: A Review. Journal of Pharmaceutical Care in Pain & Symptom Control, 29(3), 212-27.
35 Brooks, J., & Tracey, I. (2005). From nociception to pain perception: inaging the spinal and supraspinal pathways. Journal of Anatomy and Physiology, 207(1), 19-33. DOI:10.1111/j.1469-7580.2005.00428.x   DOI
36 Li, K. W., Yu, Y. P., Zhou, C., Kim, D. S., Lin, B., Sharp, K., Steward, O., & Luo, Z. D. (2014). Calcium channel alpha2delta1 proteins mediate trigeminal neuropathic pain states associated with aberrant excitatory synaptogenesis. Journal of Biological Chemistry, 289(10), 7025-37.   DOI
37 Li, X. Y., Ko, H. G., Chen, T., Descalzi, G., Koga, K., Wang, H., Kim, S. S., Shang, Y., Kwak, C., Park, S. W., Shim, J., Lee, K., Collingridge, G. L., Kaang, B. K., & Zhuo, M. (2010). Alleviatiting neuropathic pain hypersensitiviy by inhibiting PKM zeta in the anterior cingulate cortex. Science, 330(6009), 1400-1404.   DOI
38 Lutz, B. M., Nia, S., Xiong, M., Tao, Y. X., & Bekker, A. (2015). mTOR, a new potential target for chronic pain and opioid-induced tolerance and hyperalgesia. Molecular Pain, 11, 32.   DOI
39 MacFarlane, B. V., Wright, A., O'Callaghan, J., & Benson, H. A. (1997). Chronic neuropathic pain and its control by drugs. Pharmacology & Therapeutics, 75(1), 1-19. DOI: 10.1016/s0163-7258(97)00019-3.   DOI
40 Mackey, S., & Kao, M. -C. (2019). Managing twin crises in chronic pain and prescription opioids. British Medical Journal, 364, I917.
41 McQuay, H., Carroll, D., Jadad, A. R., Wiffen, P., & Moore, A. (1995). Anticonvulsant drugs for management of pain: A systemic review. British Medical Journal, 311, 1047-1052.   DOI
42 Merskey, H., Bogduk, N. (1994). Classification of chronic pain: descriptions of chronic pain syndromes and definition of pain terms 2nd. Seattle, Wash: IASP Press.
43 Minn, Y. K., & Kim, S. M. (2008). Diagnosis and treatment of neuropathic pain. Journal of the Korean Medical Association, 51(12), 1139-1148.   DOI
44 Narita, M., Nakamura, A., Ozaki, M., Imai, S., Miyoshi, K., Suzuki, M., & Suzuki, T. (2008). Comparative pharmacological profiles of morphine and oxycodone under a neuropathic pain-like state in mice: Evidence for less sensitivity to morphine. Neuropsychopharmacology, 33(5), 1097-1112.   DOI
45 Fenton, B. W., Shih, E., & Zolton, J. (2015). The neurobiology of pain perception in normal and persistent pain. Pain Management, 5(4), 297-317.   DOI
46 Gaskin, D. J., & Richard, P. (2012). The economic costs of pain in the United States. Journal of Pain, 13, 715-724. DOI:10.1016/j.jpain.2012.03.009   DOI
47 Ghaderi, F., Banakar, Shahin., & Rostami, S. (2013). Effect of pre-cooling injection site on pain perception in pediatric dentistry: "A randomized clinical trial". Dental Research Journal, 10(6), 790-794.
48 Han, J., Kwon, M., Cha, M., Tanioka, M., Hong, S. K., Bai, S. J., & Lee, B. H. (2015). Plasticity-related PKM zeta signaling in the insular cortex is involved in the modulation of neuropathic pain after nerve injury. Neural Plasticity, 2015, 601767.   DOI
49 Jett, M. F., McGuirk, J., Waligora, D., & Hunter, J. C. (1997). The effects of mexiletine, desipramine and fluoxetine in rat models involving central sensitization. Pain, 69, 161-169.   DOI
50 Ingvar, M. (1999). Pain and functional imaging. Philosophical Transactions of the Royal Society of London. Series B, Biological Science, 354, 1347-58.   DOI
51 Khoromi, S., Cuil L., Nackers, L., & Max, MB. (2007). Morphine, nortriptyline and their combination vs. placebo in patients with chronic lumbar root pain. Pain, 130, 65-75.
52 Kim, K., Choi, S., Cha, M., & Lee, B. H. (2020). Effects of mTOR inhibitors on neuropathic pain revealed by optical imaging of the insular cortex in rats. Brain Research, 1733, 146720.   DOI
53 Kwon, M., Han, J., Kim, U. J., Cha, M., Um, S. W., Bai, S. J., Hong, S. K., & Lee, B. H. (2017). Inhibition of Mammalian Target of Rapamycin (mTOR) signaling in the insular cortex alleviates neuropathic pain after peripheral nerve injury. (2017). Frontiers in Moelcular Neuroscience, 10, 79.
54 Latremoliere, A., & Woolf, C. J. (2009). Central sensitization: A generator of pain hypersensitivity by central neural plasticity. Journal of Pain, 10(9), 895-926.   DOI
55 Lee, K. K. (2008). Psychopharmacological treatment for chronic pain. Clinical Psychopharmacology and Neuroscience, 19(2), 77-84.
56 Craig, A. D. (2011). Significance of the insula for the evolution of human awareness of feelings from the body. Annals of the New York Academy of Sciences, 1225, 72-82.   DOI