DOI QR코드

DOI QR Code

Comparisons of the Plastic Changes in the Central Nervous System in the Processing of Neuropathic Pain

신경병증성 통증의 처리 과정에 있어 중추신경계의 가소성 변화 비교

  • Received : 2021.04.27
  • Accepted : 2021.04.30
  • Published : 2021.06.30

Abstract

According to International Associating for the Study of Pain (IASP) definition, neuropathic pain is a disorder characterized by dysfunction of the nervous system that, under normal conditions, mediates virulent information to the central nervous system (CNS). This pain can be divided into a disease with provable lesions in the peripheral or central nervous system and states with an incorporeal lesion of any nerves. Both conditions undergo long-term and chronic processes of change, which can eventually develop into chronic pain syndrome, that is, nervous system is inappropriately adapted and difficult to heal. However, the treatment of neuropathic pain itself is incurable from diagnosis to treatment process, and there is still a lack of notable solutions. Recently, several studies have observed the responses of CNS to harmful stimuli using image analysis technologies, such as functional magnetic resonance imaging (fMRI), positron emission tomography (PET), and optical imaging. These techniques have confirmed that the change in synaptic-plasticity was generated in brain regions which perceive and handle pain information. Furthermore, these techniques helped in understanding the interaction of learning mechanisms and chronic pain, including neuropathic pain. The study aims to describe recent findings that revealed the mechanisms of pathological pain and the structural and functional changes in the brain. Reflecting on the definition of chronic pain and inspecting the latest reports will help develop approaches to alleviate pain.

국제통증연구학회(IASP)에 따르면, 신경병증성 통증은 정상 조건에서 중추신경계에 유해한 정보를 전달하는 신경계 기능 장애로 특징 지워진다. 이런 통증은 말초 혹은 중추 신경계에 확인 가능한 병변이 있는 질환과 어떠한 신경에도 병변이 없는 상태에서 발생하는 상황으로 나누어 볼 수 있다. 두 가지 상황 모두 장기적이고 만성적인 변화과정을 겪게 되며, 결과적으로 신경계가 부적절하게 적응하여 치유되기 어려운 만성통증 증후군으로 발전할 수 있다. 그러나 이러한 통증 치료는 진단에서부터 치료까지의 과정이 어려운 탓에 현재까지도 특별한 해결방안이 부족한 실정이다. 최근 자기공명영상(fMRI), 양전자방출단층촬영법(PET), 광영상(optical imaging) 등 영상분석기술이 발달함에 따라 통증을 유발할 수 있는 유해 자극에 대한 중추신경계의 반응을 영상화하는 연구가 증가하고 있다. 이러한 영상 기법들을 통해 통증을 해석하고 처리하는 뇌 영역에서 시냅스 간 가소성 변화가 일어나고 있음을 확인하였으며, 신경병증성 통증을 비롯한 만성통증과 학습과의 상호 작용을 이해하는 데 많은 도움을 주고 있다. 본 연구는 병리적 통증의 기전과 통증 자극에 따른 뇌의 구조적, 기능적 변화에 대해 최근까지 밝혀진 연구들을 소개하고자 한다. 만성적 통증의 정의와 발생기전을 되짚고 새로운 연구 동향을 살펴보는 것은 통증을 완화할 수 있는 방안을 강구하는 데 도움이 될 것으로 사료된다.

Keywords

References

  1. American Pain Society Quality of Care Committee. (1995). Quality improvement guidelines for the threatment of acute pain and cancer pain, JAMA, 274(23), 1874-1880. DOI: 10.1001/jama.1995.03530230060032
  2. Bird, G. C., Lash, L. L., Han, J. S., Zou, X., Willis, W. D., & Neugebauer, V. (2005). Protein kinase A-dependent enhanced NMDA receptor function in pain-related synaptic plasticity in rat amygdala neurons. Journal of Physiology, 564(3), 907-921. https://doi.org/10.1113/jphysiol.2005.084780
  3. Brennan, F. (2015). The US Congressional "Decade on Pain Control and Research" 2001-2011: A Review. Journal of Pharmaceutical Care in Pain & Symptom Control, 29(3), 212-27.
  4. Brooks, J., & Tracey, I. (2005). From nociception to pain perception: inaging the spinal and supraspinal pathways. Journal of Anatomy and Physiology, 207(1), 19-33. DOI:10.1111/j.1469-7580.2005.00428.x
  5. Casey, K. L. (1999). Forebrain mechanisms of nociception and pain: Analysis through imaging. Proceedings of the National Academy of Science of the United States of America, 96(14), 7668-7674. https://doi.org/10.1073/pnas.96.14.7668
  6. Cho, S. H., Ahn, Y. W., Ok, S. M., Huh, J. Y., Ko, M. Y., & Jeong, S. H. (2011). Pharmacotherapy in neuropathic pains: Evidence-based approach. Journal of Oral Medicine and Pain, 36(2), 139-146. https://doi.org/10.14476/JOMP.2011.36.2.139
  7. Choi, Y. J., & Yoon, S. Y. (2014). Neuroaesthetics: A concise review of the evidence aimed at aesthetically sensible design. Science of Emotion & Sensibility, 17(2), 44-54.
  8. Craig, A. D., Chen, K., Bandy, D., & Reiman, E. M. (2000). Thermosensory activation of insular cortex. Nature Neuroscience, 3(2), 184-190. https://doi.org/10.1038/72131
  9. Craig, A. D. (2011). Significance of the insula for the evolution of human awareness of feelings from the body. Annals of the New York Academy of Sciences, 1225, 72-82. https://doi.org/10.1111/j.1749-6632.2011.05990.x
  10. Craig, A. D. (2014). Topographically organized projection to posterior insular cortex from the posterior portion of the ventral medial nucleus in the long-tailed macaque monkey. Journal of Comparative Neurology, 522(1), 36-63. https://doi.org/10.1002/cne.23425
  11. Dedosterd, I., & Woolf C. J. (2000). Spared nerve injury: An animal model of persistent peripheral neuroapthic pain. Pain, 87, 149-158. https://doi.org/10.1016/S0304-3959(00)00276-1
  12. Dzau, V. J., & Pizzo, P. A. (2014). Relieving pain in America:Insights from an Institute of Medicine Committee. Journal of the American Medical Association, 312, 1507-1508. https://doi.org/10.1001/jama.2014.12986
  13. Fenton, B. W., Shih, E., & Zolton, J. (2015). The neurobiology of pain perception in normal and persistent pain. Pain Management, 5(4), 297-317. https://doi.org/10.2217/pmt.15.27
  14. Gaskin, D. J., & Richard, P. (2012). The economic costs of pain in the United States. Journal of Pain, 13, 715-724. DOI:10.1016/j.jpain.2012.03.009
  15. Ghaderi, F., Banakar, Shahin., & Rostami, S. (2013). Effect of pre-cooling injection site on pain perception in pediatric dentistry: "A randomized clinical trial". Dental Research Journal, 10(6), 790-794.
  16. Han, J., Kwon, M., Cha, M., Tanioka, M., Hong, S. K., Bai, S. J., & Lee, B. H. (2015). Plasticity-related PKM zeta signaling in the insular cortex is involved in the modulation of neuropathic pain after nerve injury. Neural Plasticity, 2015, 601767. https://doi.org/10.1155/2015/601767
  17. Herr, K., Coyne, P., McCaffery, M., Manworren, R., & Merkel, S. (2011). Pain assessment in the patient unable to self-report: Position statement with clinical practice recommendations. Pain Management Nursing, 12(4), 230-250. https://doi.org/10.1016/j.pmn.2011.10.002
  18. Ingvar, M. (1999). Pain and functional imaging. Philosophical Transactions of the Royal Society of London. Series B, Biological Science, 354, 1347-58. https://doi.org/10.1098/rstb.1999.0483
  19. Jett, M. F., McGuirk, J., Waligora, D., & Hunter, J. C. (1997). The effects of mexiletine, desipramine and fluoxetine in rat models involving central sensitization. Pain, 69, 161-169. https://doi.org/10.1016/S0304-3959(96)03231-9
  20. Johansen, J. P., & Fields, H. L. (2004). Glutamatergic activation of anterior cingulate cortex produces an aversive teaching signal. Nature Neuroscience, 7(4), 398-403. https://doi.org/10.1038/nn1207
  21. Kaang, B. K. (2001). Memory and Synaptic Plasticity. Korean Journal of Brain Science and Technology, 1(1), 13-24.
  22. Khoromi, S., Cuil L., Nackers, L., & Max, MB. (2007). Morphine, nortriptyline and their combination vs. placebo in patients with chronic lumbar root pain. Pain, 130, 65-75.
  23. Kim, J., & Lee, M. (2013). Validity evidences of VAS pain scale utilizing objective physical activity measures in middle-aged females with low-back pain. Korean Journal of Measurement and Education in Physical and Sport Science, 15(2), 29-39.
  24. Kim, K., Choi, S., Cha, M., & Lee, B. H. (2020). Effects of mTOR inhibitors on neuropathic pain revealed by optical imaging of the insular cortex in rats. Brain Research, 1733, 146720. https://doi.org/10.1016/j.brainres.2020.146720
  25. Kohno, T., Ji, R. R., Ito, N., Allchorne, A. J., Befort, K., Karchewski, L. A., & Woolf, C. J. (2005). Peripheral axonal injury results in reduced mu opioid receptor pre- and post- synaptic action in the spinal cord. Pain, 117(1-2), 77-87. https://doi.org/10.1016/j.pain.2005.05.035
  26. Kukkar, A., Bali, A., Singh, N., & Jaggi, A. S. (2013). Implications and mechanisms of action of gabapentin in neuropathic pain. Archives of Pharmacal Research, 36(3), 237-251. https://doi.org/10.1007/s12272-013-0057-y
  27. Kwon, M., Han, J., Kim, U. J., Cha, M., Um, S. W., Bai, S. J., Hong, S. K., & Lee, B. H. (2017). Inhibition of Mammalian Target of Rapamycin (mTOR) signaling in the insular cortex alleviates neuropathic pain after peripheral nerve injury. (2017). Frontiers in Moelcular Neuroscience, 10, 79.
  28. Latremoliere, A., & Woolf, C. J. (2009). Central sensitization: A generator of pain hypersensitivity by central neural plasticity. Journal of Pain, 10(9), 895-926. https://doi.org/10.1016/j.jpain.2009.06.012
  29. Lee, B. H., Won, R., Baik, E. J., Lee, S. H., & Moon, C. H. (2000). An animal model of neuropathic pain employing injury to the sciatic nerve branches. Neuroreport, 11(4), 657-661. https://doi.org/10.1097/00001756-200003200-00002
  30. Lee, K. K. (2008). Psychopharmacological treatment for chronic pain. Clinical Psychopharmacology and Neuroscience, 19(2), 77-84.
  31. Lee, Y. (2002). Neuropathic pain. Inje Medical Journal, 23(5), 171-174.
  32. Li, K. W., Yu, Y. P., Zhou, C., Kim, D. S., Lin, B., Sharp, K., Steward, O., & Luo, Z. D. (2014). Calcium channel alpha2delta1 proteins mediate trigeminal neuropathic pain states associated with aberrant excitatory synaptogenesis. Journal of Biological Chemistry, 289(10), 7025-37. https://doi.org/10.1074/jbc.M114.548990
  33. Li, X. Y., Ko, H. G., Chen, T., Descalzi, G., Koga, K., Wang, H., Kim, S. S., Shang, Y., Kwak, C., Park, S. W., Shim, J., Lee, K., Collingridge, G. L., Kaang, B. K., & Zhuo, M. (2010). Alleviatiting neuropathic pain hypersensitiviy by inhibiting PKM zeta in the anterior cingulate cortex. Science, 330(6009), 1400-1404. https://doi.org/10.1126/science.1191792
  34. Lutz, B. M., Nia, S., Xiong, M., Tao, Y. X., & Bekker, A. (2015). mTOR, a new potential target for chronic pain and opioid-induced tolerance and hyperalgesia. Molecular Pain, 11, 32. https://doi.org/10.1186/s12990-015-0030-5
  35. MacFarlane, B. V., Wright, A., O'Callaghan, J., & Benson, H. A. (1997). Chronic neuropathic pain and its control by drugs. Pharmacology & Therapeutics, 75(1), 1-19. DOI: 10.1016/s0163-7258(97)00019-3.
  36. Mackey, S., & Kao, M. -C. (2019). Managing twin crises in chronic pain and prescription opioids. British Medical Journal, 364, I917.
  37. McQuay, H., Carroll, D., Jadad, A. R., Wiffen, P., & Moore, A. (1995). Anticonvulsant drugs for management of pain: A systemic review. British Medical Journal, 311, 1047-1052. https://doi.org/10.1136/bmj.311.7012.1047
  38. Merskey, H., Bogduk, N. (1994). Classification of chronic pain: descriptions of chronic pain syndromes and definition of pain terms 2nd. Seattle, Wash: IASP Press.
  39. Minn, Y. K., & Kim, S. M. (2008). Diagnosis and treatment of neuropathic pain. Journal of the Korean Medical Association, 51(12), 1139-1148. https://doi.org/10.5124/jkma.2008.51.12.1139
  40. Mutso, A. A., Radzicki, D., Baliki, M. N., Huang, L., Banisadr, G., Centeno, M. V., Radulovic, J., Martina, M., Miller, R. J., & Apkarian, A. V. (2012) Abnormalities in hippocampal functioning with persistent pain. Journal of Neuroscience, 32(17), 5747-5756. https://doi.org/10.1523/JNEUROSCI.0587-12.2012
  41. Narita, M., Nakamura, A., Ozaki, M., Imai, S., Miyoshi, K., Suzuki, M., & Suzuki, T. (2008). Comparative pharmacological profiles of morphine and oxycodone under a neuropathic pain-like state in mice: Evidence for less sensitivity to morphine. Neuropsychopharmacology, 33(5), 1097-1112. https://doi.org/10.1038/sj.npp.1301471
  42. Peyron, R., Larrea, L. G., Gregoire, M. C., Convers, P., Richard, A., Lavenne, F., Barral, F. G., Mauguiere, F., Michel, D., & Laurent, B. (2000). Parietal and cingulate process in central pain. a combined postiron emission tomography (PET) and functional magnetic resonance imaging (fMRI) study of an unusual case. Pain, 84(1), 77-87. https://doi.org/10.1016/S0304-3959(99)00190-6
  43. Peyron, R., Laurent, B., & Garcia-Larrea, L. (2000). Functional imaging of brain responses to pain. a review and meta-analysis. Clinical Neurophysiology, 30, 263-88. https://doi.org/10.1016/S0987-7053(00)00227-6
  44. Qu, C., King, T., Okun, A., Lai, J., Fields, H.L., & Porreca, F. (2011). Lesion of the rostral anterior cingulate cortex eliminates the aversiveness of spontaneous neuropathic pain following partial or complete axotomy. Pain, 152(7), 1641-1648. https://doi.org/10.1016/j.pain.2011.03.002
  45. Samineni, V. K., Prenkumar, L. S., & Faingold, C. L. (2017). Neuropathic pain-induced enhancement of spontaneous and pain-evoked neuronal activity in the periaqueductal gray that is attenuated by gabapentin. Pain, 158(7), 1241-1253. https://doi.org/10.1097/j.pain.0000000000000905
  46. Scholz, J., & Woolf, C. J. (2007). The neuropathic pain triad: Neuron, immune cells and glia. Nature Neuroscience, 10, 1361-1368. https://doi.org/10.1038/nn1992
  47. Schweinhardt, P., Glynn, C., Brooks, J., McQuay, H., Jack, T., Chessell, I., Bountra, C., & Tracey, I. (2006). An fMRI study of cerebral processing of brush-evoked allodynia in neuropathic pain patients. Neuroimage, 32, 256-265. https://doi.org/10.1016/j.neuroimage.2006.03.024
  48. Seltzer, Z., Dubner, R., & Shir, Y. (1990). A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain, 43, 205-218. https://doi.org/10.1016/0304-3959(90)91074-S
  49. Sirianni, J., Ibrahim, M., & Patwardhan, A. (2015). Chronic pain syndromes, mechanisms, and current treatments. Progress in Molecular Biology and Translational Science, 131, 565-611. https://doi.org/10.1016/bs.pmbts.2015.01.004
  50. Tabata, M., Terayama, R., Maruhama, K., lida, S., & Sugimoto, T. (2018). Differential induction of c-Fos and phosphorylated ERK by a noxious stimulus after peripheral nerve injury. International Journal of Neuroscience, 128(3), 208-218. https://doi.org/10.1080/00207454.2017.1381697
  51. Thacker, M. A., Clark, A. K., Marchand, F., & McMahon S. B. (2007). Pathophysiology of peripheral neuropathic pain: Immune cells and molecules. Anesthesia and Analgesia, 105(3), 838-47. https://doi.org/10.1213/01.ane.0000275190.42912.37
  52. Tsuda, M., Koga, K., Chen, T., & Zhuo, M. (2017). Neuronal and microglial mechanisms for neuropathic pain in the spinal dorsal horn and anterior cingulate cortex. Journal of Neurochemistry, 141(4), 486-498. https://doi.org/10.1111/jnc.14001
  53. Um, S. W., Kim, M. J., Leem, J. W., Bai, S. J., & Lee, B. H. (2019). Pain-relieving effects of mTOR inhibitor in the anterior cingulate cortex of neuropathic rats. Molecular Neurobiology, 56, 2482-2494. https://doi.org/10.1007/s12035-018-1245-z
  54. Wager, T. D., Atlas, L. Y., Lindquist, M. A., Roy, M., Woo, C. W., & Kross, E. (2013). An fMRI-based neurologic signature of physical pain. New England Journal of Medicine, 368(15), 1388-1397. https://doi.org/10.1056/NEJMoa1204471
  55. Williams, A. C. De. C., & Craig, K. D. (2016). Updating the definition of pain. Pain, 157(11), 2420-2423. https://doi.org/10.1097/j.pain.0000000000000613
  56. Yang, G., Pan, F., & Gan, W. -B. (2009). Stably maintained dendritic spines are associated with lifelong memories. Nature, 17, 462(7275), 920-924. https://doi.org/10.1038/nature08577