• Title/Summary/Keyword: Normal direction

Search Result 1,133, Processing Time 0.028 seconds

Energy-balance node-selection algorithm for heterogeneous wireless sensor networks

  • Khan, Imran;Singh, Dhananjay
    • ETRI Journal
    • /
    • v.40 no.5
    • /
    • pp.604-612
    • /
    • 2018
  • To solve the problem of unbalanced loads and the short network lifetime of heterogeneous wireless sensor networks, this paper proposes a node-selection algorithm based on energy balance and dynamic adjustment. The spacing and energy of the nodes are calculated according to the proximity to the network nodes and the characteristics of the link structure. The direction factor and the energy-adjustment factor are introduced to optimize the node-selection probability in order to realize the dynamic selection of network nodes. On this basis, the target path is selected by the relevance of the nodes, and nodes with insufficient energy values are excluded in real time by the establishment of the node-selection mechanism, which guarantees the normal operation of the network and a balanced energy consumption. Simulation results show that this algorithm can effectively extend the network lifetime, and it has better stability, higher accuracy, and an enhanced data-receiving rate in sufficient time.

Friction and Wear Simulation of Suspended Silicon Asperity Moving over a Plate at Microscale

  • Cho, Sung-San;Kim, Jung-Soo;Park, Seung-Ho
    • International Journal of Safety
    • /
    • v.5 no.1
    • /
    • pp.10-16
    • /
    • 2006
  • A suspended hemispherical silicon asperity moving over a silicon plate was simulated. The simulation results on friction and wear in the interface between the two can help obtain more durable miscroscale structures. Silicon structures were constructed with Tersoff three-body potential. Dependence of friction and wear of the asperity on both the atomic arrangement in the plate and the moving direction was investigated under the condition that the asperity is subject to the attractive normal force due to the plate. The results show that the variation of friction force with the movement of asperity, and the occurrence of adhesive wear are attributed to the formation and rupture of asperity, junction between the asperity and the plate. The friction force and wear are smaller when the asperity is incommensurate with the plate, and they also depend on the moving direction of the asperity over the plate.

2-D Model Analysis on the Multilayer Piezoelectric Ceramic Actuators (적층 압전세라믹 액츄에이터의 2차원모델 해석에 관한 연구)

  • 홍재일;류주현;박창엽
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.307-310
    • /
    • 1998
  • Finite element analysis was investigated on the stress distribution at the 2-D model of piezoelectric ceramic actuators. The y direction maximum stress decreased with a(internal electrode gap) size until 0.4 mm and is not much difference with c(external electrode thickness) size. The stress distribution with internal layers is almost same, and the stress distribution of load condition is higher than that of no load condition. The y direction maximum stress increased exponentially with the number of layer and saturated at 260 layers. In the case of defective actuator, the stress distribution is smaller than that of normal actuator.

  • PDF

Design and Manufactures of Cyclocopter Composite Wing Blades (사이클로콥터의 복합재료 Wing blade 설계 및 제작)

  • 김승조;윤철용;백병주
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.187-190
    • /
    • 2000
  • Cyclocopter is air vehicle to vertically take-off and land like a helicopter. This is an efficient and quiet means of being able to direct thrust compared to a helicopter. The rotor consists of several blades rotating about a horizontal axis perpendicular to the direction of normal flight. The direction of blade span is parallel to rotating axis and both end roots are connected to the hub to resist centrifugal force and to transmit the power. The pitch of the individual blades to the tangent of the circle of the blade's path is varied cyclically to gain thrust. In the paper, the design and manufactures of cyclocopter rotor blades are presented. Stress at the roots of cyclocopter blades is great due to centrifugal and aerodynamic forces and aeroelastic instabilities appear. The blades consist of main spar, front spar, polyurethan foam, weight, and skin and spars and skin are made of glass/epoxy composite.

  • PDF

Molecular Dynamics Simulation of Adhesive Friction of Silicon Asperity (실리콘 돌기의 응착마찰 분자동력학 시뮬레이션)

  • Park, Seung-Ho;Cho, Sung-San
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.547-553
    • /
    • 2004
  • A hemispherical asperity moving over a flat plane is simulated based on classical molecular dynamics. The asperity and the plane consist of silicon atoms whose interactions are governed by the Tersoff three-body potential. The gap between the asperity and the plane is maintained to produce attractive normal force in order to investigate the adhesive friction and wear. The simulation focuses on the influence of crystallographic orientation of the contacting surfaces and the moving direction. It is demonstrated that the adhesive friction and wear are lower when crystallographic orientations of the contacting surfaces are different, and also depend on the moving direction relative to the crystal1ographic orientation.

Behavior of small particles in isotropic turbulence in the presence of gravity (중력이 존재하는 등방성 난류에서 작은 입자의 유동)

  • Cho, Seong-Gee;Yeo, Kyong-Min;Lee, Chang-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2396-2400
    • /
    • 2008
  • The motion of small heavy particles in homogeneous isotropic turbulence in the present of gravity is investigated using Direct Numerical Simulations (DNS) at moderate Reynolds number. The Lagrangian velocity and acceleration statistics of particles and of flow for a wide range of Stokes number, defined as the ratio of the particle response time to Kolmogorov time scale of turbulence, were obtained for the direction of the gravity and normal direction, respectively. It is found that particles lose their correction faster than the case without gravity. Then, a significant increase in the average settling velocity was observed for a certain range of Stokes number. Our focus is placed on gravitational effect on very small particles. Our simulations show that as the Stokes number reduces to zero, their mean settling velocity approaches the terminal velocity in still fluid.

  • PDF

Free Vibrations and Buckling of Rectangular Plates with Linearly Varying In-Plane Loading

  • Chang, Kyong-Ho;Shim, Hyun-Ju;Kang, Jae-Hoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.4 s.14
    • /
    • pp.99-111
    • /
    • 2004
  • An exact solution procedure is formulated for the free vibration and buckling analysis of rectangular plates having two opposite edges simply supported when these edges are subjected to linearly varying normal stresses. The other two edges may be clamped, simply supported or free, or they may be elastically supported. The transverse displacement (w) is assumed as sinusoidal in the direction of loading (x), and a power series is assumed in the lateral (y) direction (i.e., the method of Frobenius). Applying the boundary conditions yields the eigenvalue problem of finding the roots of a fourth order characteristic determinant. Care must be exercised to obtain adequate convergence for accurate vibration frequencies and buckling loads, as is demonstrated by two convergence tables. Some interesting and useful results for vibration frequencies and buckling loads, and their mode shapes, are presented for a variety of edge conditions and in-plane loadings, especially pure in-plane moments.

  • PDF

Levitation and propulsion Control of Magnetic Levitated Vehicle Application Using Linear Switched-Reluctance Motor (LSRM을 이용한 자기부상열차 부상 및 추진제어)

  • SUNG H.K.;JO J.M.;JEONG B.S.;JANG S.M.;KWEON J.K.;KIM D.S.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1343-1345
    • /
    • 2004
  • The inherent pulsating force generation makes the control of switched-reluctance motor quite complicate. So in this paper, an orthogonal scheme that can be applied to the control of LSRM will be presented. By using this scheme, the motor reluctance forces, which are magnetically decoupled and position dependent, can be projected onto sets of stationary axes that are aligned with the motor fixed secondary poles. Hence the electromagnetic forces can be controlled not only for driving the LSRM at its propulsive direction but also for alleviating the load at its normal direction. Simulation results will be provided to show the validity of the proposed scheme.

  • PDF

The Design and Fabrication of the Kicker Modulator for PLS-II (PLS-II 키커 모듈레이터 설계 및 제작)

  • Son, Yoon Kyoo;An, Suk Ho;Shin, Seung Hwan;Lee, Tae Yeon
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.421-422
    • /
    • 2017
  • The kicker modulator was upgraded and installed in 1995. The PLS-II injection kicker modulator is configured with series resonant circuit. A total of four kicker magnets are used to distribute the normal storage ring beam orbit toward the septum magnet wall. Only one kicker modulator is used to drive the four kicker magnets. It is not adjust the current magnitude and timing of magnets. During the kicking, the beam has oscillation of 2 mm horizontal direction and $200{\mu}m$ vertical direction in present injector system. Our goals is to decrease the oscillation less than $300{\mu}m$. To give balanced current for all four magnets and to have precise timing between magnet current, we have plan to divide kicker power supply into four individual power supply. In this paper, the design of new individual kicker power supply and Fabrication of the new injector system is presented.

  • PDF

Inverse Analysis of Ultrasonic Signals of Ceramics Based on Ultrasonic Self-Compensating Technique

  • Lee Joon-Hyun;Cheng Ansheng
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.185-190
    • /
    • 2006
  • An ultrasonic self-calibrating technique for the characterization of a ceramic which was fabricated by change pressing time during the HIP process has been applied by using the ratio of the reflection and transmission coefficients of normal incidence longitudinal waves. The ratio is self-compensated, in that it is independent of the characteristics for transmission and reception of ultrasound by the transducer and the condition of the couplant. The insensitive direction in parameter space is defined as the direction in which the variation of the ratio to changes of two parameters vanishes. For inverse problem the distribution of minima in an error surface is investigated.