DOI QR코드

DOI QR Code

Molecular Dynamics Simulation of Adhesive Friction of Silicon Asperity

실리콘 돌기의 응착마찰 분자동력학 시뮬레이션

  • 박승호 (홍익대학교 기계ㆍ시스템디자인공학과) ;
  • 조성산 (홍익대학교 기계ㆍ시스템디자인공학과)
  • Published : 2004.05.01

Abstract

A hemispherical asperity moving over a flat plane is simulated based on classical molecular dynamics. The asperity and the plane consist of silicon atoms whose interactions are governed by the Tersoff three-body potential. The gap between the asperity and the plane is maintained to produce attractive normal force in order to investigate the adhesive friction and wear. The simulation focuses on the influence of crystallographic orientation of the contacting surfaces and the moving direction. It is demonstrated that the adhesive friction and wear are lower when crystallographic orientations of the contacting surfaces are different, and also depend on the moving direction relative to the crystal1ographic orientation.

Keywords

References

  1. Komvopoulos, K., 1996, 'Surface Engineering and Microtribology for Microelectromechanical systems,' Wear, Vol. 200, pp. 305-327 https://doi.org/10.1016/S0043-1648(96)07328-0
  2. Maboudian, R., 1998, 'Surface Processes in MEMS Technology,' Surface Science Reports, Vol. 30, pp. 207-269 https://doi.org/10.1016/S0167-5729(97)00014-9
  3. Harrison, J. A., White, C. T., Colton, R. J., and Brenner, D. W., 1995, 'Investigation of the Atomic-Scale Friction and Energy Dissipation in Diamond Using Molecular Dynamics,' Thin Solid Films, Vol. 260, pp. 205-211 https://doi.org/10.1016/0040-6090(94)06511-X
  4. Zhang, L., and Tanaka, H., 1997, 'Towards a Deeper Understanding of Wear and Friction on the Atomic Scale - A Molecular Dynamics Analysis,' Wear, Vol. 211, pp. 44-53 https://doi.org/10.1016/S0043-1648(97)00073-2
  5. Shimizu, J., Eda, H., Yoritsune, M., and Ohmura, E., 1998, 'Molecular Dynamics Simulation of Friction on the Atomic Scale,' Nanotechnology, Vol. 9, pp. 118-123 https://doi.org/10.1088/0957-4484/9/2/014
  6. Zhang, L., and Tanaka, H., 1998, 'Atomic Scale Deformation in Silicon Monocrystals Induced by Two-Body and Three-Body Contact Sliding,' Tribology International, Vol. 31, No. 8, pp. 425-433 https://doi.org/10.1016/S0301-679X(98)00064-4
  7. He, G., Muser, M. H., and Robbins, M. O., 1999, 'Adsorbed Layers and the Origin of Static Friction,' Science, Vol. 284, pp. 1650-1652 https://doi.org/10.1126/science.284.5420.1650
  8. Komanduri, R., and Chandrasekaran, N., 2000, 'Molecular Dynamics Simulation of Atomic-Scale Friction,' Physical Review B, Vol. 61, No. 20, pp. 14007-14019 https://doi.org/10.1103/PhysRevB.61.14007
  9. Komanduri, R., Chandrasekaran, N., and Raff, L. M., 2000, 'MD Simulation of Indentation and Scratching of Single Crystal Aluminum,' Wear, Vol. 240, pp. 113-143 https://doi.org/10.1016/S0043-1648(00)00358-6
  10. Hayashi, K., Maeda, A., Terayama, T., and Sakudo, N., 2000, 'Molecular Dynamics Size Mechanisms and Actuators Based on an Atomistic Simplified Model,' Computational Materials Science, Vol. 17, pp. 356-360 https://doi.org/10.1016/S0927-0256(00)00052-5
  11. Cai, J., and Wang, J.-S., 2002, 'Friction between Si Tip and $(001)-2{\times}1$ Surface : A Molecular Dynamics Simulation,' Computer Physics Communications, Vol. 147, pp. 145-148 https://doi.org/10.1016/S0010-4655(02)00282-5
  12. Ciraci, S., and Buldum, A., 2003, 'Atomic-Scale Study of Friction and Energy Dissipation,' Wear, Vol. 254, pp. 911-916 https://doi.org/10.1016/S0043-1648(03)00246-1
  13. Mulliah, D., Christopher, D., Kenny, S. D., and Smith, R., 2003, 'Nanoscratching of Silver(100) with a Diamond Tip,' Nuclear Instruments and Methods in Physics Research B, Vol. 202, pp. 294-299 https://doi.org/10.1016/S0168-583X(02)01872-4
  14. Tersoff, J., 1988, 'Empirical Interatomic Potential for Silicon with Improved Elastic Properties,' Physical Review B, Vol. 38, pp. 9902-9905 https://doi.org/10.1103/PhysRevB.38.9902
  15. Hailes, J. M., 1992, Molecular Dynamics Simulation, John Wiley & Sons, pp. 260-267
  16. Tu, N. K., Mayer, J. W., and Feldman, L. C., 1992, Electronic Thin Film Science for Electrical Engineers and Materials Scientist, Macmillan Pub. Co., p. 412
  17. Meyer, E., Overney, R. M., Dransfeld, K., and Gyalog, T., 1998, Nanoscience: Friction and Rheology on the Nanometer Scale, World Scientific Pub. Co., pp. 136-155
  18. Nanoscience: Friction and Rheology on the Nanometer Scale Meyer,E.;Overney,R.M.;Dransfeld,K.;Gyalog,T.