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Free Vibrations and Buckling of Rectangular
Plates with Linearly Varying In—Plane Loading
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Abstract

An exact solution procedure is formulated for the free vibration and buckling analysis of rectangular plates having two
opposite edges simply supported when these edges are subjected to linearly varying normal stresses. The other two edges
may be clamped, simply supported or free, or they may be elastically supported. The transverse displacement (w) is
assumed as sinusoidal in the direction of loading (x), and a power series is assumed in the lateral (y) direction (ie., the
method of Frobenius). Applying the boundary conditions yields the eigenvalue problem of finding the roots of a fourth
order characteristic determinant. Care must be exercised to obtain adequate convergence for accurate vibration frequencies
and buckling loads, as is demonstrated by two convergence tables. Some interesting and useful results for vibration
frequencies and buckling loads, and their mode shapes, are presented for a variety of edge conditions and in-plane

loadings, especially pure in-plane moments.

Keyword : Free Vibration; Buckling; Exact Solution; Rectangular Plates; Frobenius Method: Linearly Varying

In-Plane Stresss.

1. INTRODUCTION

For more than a century researchers in
structural mechanics throughout the world have
endeavored to obtain accurate theoretical results
for the free vibration frequencies and critical
buckling loads of plates, as well as their
corresponding mode shapes. Several thousands
of research papers on these topics have
appeared in the international scientific and
technical journals and in conference proceedings,
most of them dealing with rectangular plates.
Much of the useful results has been summarized
in monographs and handbooks."®

Rectangular plates subjected to uniform, static

in-plane stresses have been extensively analyzed
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in both the vibrations and buckling literature.
When the in-plane stresses vary throughout the
plate the analysis is more formidable, and exact
solutions for either type of problem are much
more difficult to achieve. One finds considerable
approximate results for plate buckling loads for
such non-uniform stress fields, typically obtained
by energy methods, but very little for the plate
vibration problem.

The writers have recently looked into the case
of the rectangular plate which has two opposite
edges restrained by hinges or knife edges (ie.,
“simply supported”), with these edges both
having linearly varying normal stress (9:)
acting on them (Fig. 1). This normal stress may
be caused by a combination of longitudinal force
and in-plane bending moment applied at each of

the two simply supported edges. The other two
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Fig. 1. An SS-F-SS-C rectangular plate
loaded by linearly varying in-plane
stresses.

edges may be clamped, simply supported or
free. Although some buckling loads (but few
mode shapes) obtained by energy methods are
available in the published literature, the writers
know of no free vibration results.

Exact solutions for the free vibration
frequencies and buckling loads, and their mode
shapes, may be obtained for the plates described
above by using a power series representation for
the transverse displacement (w) in the lateral (y)
direction (ie., the method of Frobenius). The
writers have pursued this to obtain extensive
results, which will be published in a series of
research journal papers. In the present work, the
method of analysis is shown, and some of the
interesting results for frequencies, buckling loads

and mode shapes are reported.

2. ANALYSIS

Consider a rectangular plate of lateral
dimensions axb, as shown in Fig. 1, having its
edges x=0 and x=a simply supported and
linearly varying in-plane stresses at these two
edges, whereas the other two edges (y=0 and
y=b) may be either clamped, simply supported
or free, and have no in-plane stresses. Assuming
that the plate is thin, has uniform thickness, and
that its material is homogeneous, isotropic and
linearly elastic, the differential equation of

motion governing vibration and buckling is”

*w ’w o’w o*w
DV4w+ph5t7=q+NX?+2ny e + 5
1)

where w is transverse displacement; P is
mass density per unit volume; ki is the plate
thickness; ¢ is time; q is a distributed pressure
per unit surface area applied to the lateral

surface; V* is the bi-harmonic differential

operator (i.e, 9*/ax* +29*/ax*dy* +0* [ay*
rectangular co-ordinates)y D is the flexural
rigidity of the plate defined by

EW®

b 12(1-v?) @

n

E is Young's modulus; vV is Poisson’s ratio;

N, and Ny are normal forces per unit length of
plate in the x and y directions, respectively,
positive if in tension; and Vo is shearing force
per unit length in the xy-plane. The forces (per
unit length) are related to the in-plane stresses
(:,97, %) by Ny=oh, N,=0h  and

Nwzrxyh.

Let us assume 9=Ny =Ny =0 and express

N, by the linear variation
=-N|1-a2
N = N, 0(1 o b ) . (3)

where Ny is the intensity of compressive force
at the edge y=0 and & is a numerical factor.
This stress distribution remains the same within
the interior of the plate, and satisfies the plane
elasticity equations exactly. By changing &, we
can obtain various particular cases. For example,
by taking =0 we have the case of uniformly
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Free Vibrations and Buckling of Rectangular Plates with Linearly Varying In-Plane Loading

—N, —0.5N;
—N, —N,
a =0 a=05

0 0.5N, N,

_NO _No
a=15 a=

Fig. 2. Examples of in-plane loading N: along the edge x=0.

distributed compressive force. When =1, the
compressive force varies linearly from —No at
y=0 to zero at y=b. For a =2 we obtain the case
of pure in-plane bending. With other @ in the
range 0<a <2, we have a combination of
bending and compression. Examples of these
cases are shown in Fig. 2. For <0 or a>2
the problems arising are identical with ones
having 0<a<2 if the edge conditions at y=0
and b are considered properly. The governing
equation of motion (1) reduces to

s phd*w N, y \o*w
\Y% W+3—a?-+"D—0(1—(x;)ax—2=0 (4)

Adopting the non-dimensional coordinates
¢=x/a and N=y/b, equation (4) becomes

o*w , O'w +k4§4l+

& o

a’N, *w
1 —_ =
( om ’_65 =0

a‘ph *w
—+
D o

©)

where k=a/b is the aspect ratio.
A solution for the displacement w may be
taken as:

where Y, is a function of 7, ® a natural
frequency, and m the numbers of half-waves in
mode shapes in the x direction. Equation (6)

satisfies exactly the simply-supported boundary
conditions at =0 and 1. Substituting Eq. (6)
into (5) yields

1 2
YmIV—zﬁ,iYm+{ﬁ,;‘—N*(l—om)B,i—x—} Y,=0

k4
)
where %, and Y, are the fourth and second
derivatives of Y. with respect to 7, respectively,

B is defined by

mn

Bu=—" (m=1,2 3:) ®)

and A and NV are the nondimensional frequency
and the compressive force at the edge y=0,

respectively, defined by

A Ea)azx/% )

2
N = N;)b (10)

Equation (7) is an ordinary differential one in

w(&,n,0) =Y, (1) sin(mng) sin ax 6)
o4 - F7PxEE =27
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N for each m. The ordinary differential equation
has one variable coefficient in it, but it may be
solved exactly by the method of Frobenius (ie.,
a power series solution).

Let us assume the deflection function as
Y=Y Conl” (11)
n=0

where Cun is an arbitrary coefficient. Thus,

we have derivatives as follows;

Y, =Y nC,, 0" 12)
n=1

Y, =3 nn-1C,,n"" 1)
n=2

Y, @=3 ntn-1n-2C,,n"* (14)

n=3

Y=Y n(n-Dn-2)n-3C,, 1" (15

n=4

Substituting Egs. (11), (13), and (15) into Eq.
(7), we obtain

2 0
#(n=1)Cp, " + [Bm“ N, - x—] > 19
Cm,n Tln +a’ﬁm2N* icm,n nn+1 = O
n=0
Shifting indices, Eq. (16) becomes
> [{(n +4)(n+3)(n+2)(n+1)C, s — 2B, (1 +2)
n=0

(n+1)C, 12 +TC,. }n" +aB,’N°C, 0" ]: 0
(17)

where

Pt NB2_~ (18)
_ﬁm Nﬁm k4

Using the property of identity, for the

coefficient of 1’ ,

1, 1
Cm,4 - gﬂm Cm,2 -arcm,O (19)

and for the coefficients of 1" (n=123,...)

C

m,n+4 =
28,2 (n+2)(n+1C,, .2 -TC,, —0B,’N'C, .,
(n+d(n+ NHn+2)n+ 1)

(20)

Equations (19) and (20) are the recursion
relationships for Cumn when n24.

Thus, Cmo, Cmi, Cnz2, and Cns are arbitrary
coefficients, which will be used in two boundary
conditions at each side (1=9 and 1), and the

other coefficients Cnn for n24 are expressed in
terms of them. Typically, the four boundary
conditions yield four homogeneous equations

with unknown Cmo, Cmi, Cm2, and Cns. To
obtain a non-trivial solution of the system, the
determinant of the matrix of the coefficients is
set to zero for the nondimensional frequencies
(2). One sees that the elements of the matrix
have infinite series in them. Substituting each 4

back into the four homogeneous equations yields

the corresponding eigenvectors, Crn/Cro (with
n=1, 2, 3), which determines the mode shape.
There are three physically meaningful types of
boundary conditions along the edges 7=0 and
=1 for which this solution may be used”:

ow

clamped: w=0 and a_y=0 = Ym}.Ym,=0

(21a)
simply supported: w=0 and M, =0 _

”

Y, =Y, =0 (21b)
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Free Vibrations and Buckling of Rectangular Piates with Linearly Varying In-Plane Loading

free: M, =0 and V,=0

”

Y, =Y, +mni2-v)Y, =0 (21c)

Substituting Eq. (11) into one of the sets of
boundary condition (21) for each of the two
edges, M1=0 and M=1, yields the fourth order
characteristic determinant described earlier from
which the eigenvalues (frequencies or buckling
loads) may be found. In certain special cases, the

determinant quickly reduces to a lower order one.

3. CONVERGENCE STUDIES

The exact solution functions given by Eq. (11)
require summing an infinite series. Depending
upon the degree of accuracy which one wants to
have in numerical calculations, the upper limit
of the summation is truncated at a finite number
(N), which may be as large as needed. This
procedure is no different than that followed in
the evaluation of other transcendental functions
arising in the exact solutions of other boundary
value problems (e.g., Bessel functions, Hankel
functions).

To examine the convergence rate of the power
series of Eq. (11), the present equations are
applied to the case of free vibrations of an
SS-CGSS-C square plate under three loading
conditions (@ =0, 1, 2) for modes having two
half-waves in the x-direction (m=2), when the
load applied is on-half of the critical buckling
value. This convergence study is shown in Table 1.

In Table 1 it is seen that for even the lowest
frequency, which has a relatively simple mode
shape with only one interior node line, at least 25
terms of the power series are required to obtain
a reasonably accurate value of A (37.36), whereas
31 terms are needed to obtain the frequency
accurately to four significant figures (38.71). The

Table 1. Convergence of nondimensional

frequencies
SS-C-SS-C plate with a/b=1,

and Ny/N, =05

A=aa® [ph/D

for an
m=2,

a=0
1 2 3

o=1
1 2 3

RHEESS

37

39

S

4]

R&EERESS

47
48

3736 BB -
3938 6819 -
3880 7853 -
3868 2081 -
3872 8408 -
3871 87.56 1159
3871 90 -
3871 8646 1320
BT 8625 -
3871 8632 1428
3671 8630 -
3871 8630 1481
3871 8630 1507
3871 8630 1496
3871 8630 1500
3871 8630 1498
3871 8630 1499
3871 8630 1499
3871 8630 1499
3871 8630 1499
3871 8630 1499
3871 8630 1499
3871 8630 1499

2488 3% -
M7 - -
4324 6144 -
3789 209% -
3972 7648 -
3889 - -
3922 8366 -
39.09 88.67 1188
39.14 8614 -

3827 2176 -
5726 6153 -

3912 87.04 13534372 - -

3913 8667 -
3912 86,81 1451

4722 8459 -
4H47 D34 -

3913 86.76 1543|4620 9299 -

3912 86.78 149.0

4588 9881 1341

39.13 86.77 150.6(46.01 9582 -

3913 86.77 1499
3913 86.77 1502

4596 9696 148.1
4598 9047 1626

39.13 86.77 150.1|45.97 9%6.67 153.7

3913 86.77 1501
3913 8677 1501
3913 86.77 1501
3913 86.77 1501
3913 86.77 1501

4597 9659 1564
4597 96.62 155.2
4597 9%.61 155.6
4597 9%.61 1555
4597 96.61 1555

underlined numbers in the table are those
beyond which the fourth digit does not change as
N increases. As more terms are taken the
frequencies converge to their exact values. Data is
not given in Table 1 for these modes for certain
small numbers of terms because of the difficulty
of the computer in establishing the roots of the
frequency determinant in these cases.

Table 1 also shows that for the higher
frequencies, having additional node lines in their
corresponding mode shapes, more terms of the
series are needed to represent the plate
deformations properly. Thus, for example, for
the third mode with =2 (inplane moments),

taking 42 terms or less yields a frequency which

24

o
ol

Aexss =2
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Table 2. Convergence of nondimensional critical buckling moments M. =M/D of rectangular
plates with two opposite edges simply-supported for a/b=2.3, & =2, and V=03 by

the power series method.

N SCSC SCSS S-CSF SSSC 5555 SSSF SFESC SESS SFSF
(=) () (w) k) ey ed)  (el) () (me])
5 - - - - - - 1.615 5771 2498
7 16.02 - - - 6.543 - 3.017 1.312 6253
9 3.764 - - 3827 7.025 2695 3.352 1.660 1.067
11 1.204 - - - 53.58 - 3.779 1.903 1424
13 07537 - - 51.81 3494 36.03 3.908 1.983 1583
15 9309 4502 - - 3356 1206 3.923 1.993 1.606
17 2.263 1.498 .6914 87.92 15.36 4303 3.925 1.9% 1.610
19 4112 2.984 1.821 670.5 20.78 40.60 3.925 1.9% 1.610
21 6.619 5.050 3.562 1454 139.8 3688 3925 1.9% 1.610
23 9.909 7.832 6.161 - 536.2 3747 3.925 1.994 1.610
25 14.08 1145 10.01 157.6 4250 37.69 3925 1.994 1.610
27 19.23 16.02 16.13 130.8 38.17 39.05 3.925 1.9% 1.610
29 2540 21.62 5715 4237 3945 3948 3.925 1.9% 1.610
31 3258 28.33 576.2 40.55 39.87 39.68 3.925 1.9% 1.610
33 40.62 36.11 511.2 4017 3984 39.73 3.925 1.994 1.610
35 49.06 44.74 600.7 40,08 39.83 39.74 3.925 1.9 1.610
37 56.75 53.41 5145 4007 39.83 39.755 3925 19% 1.610
39 62.01 60.26 505.9 40.06 39.83 39.75 3.925 1.9%4 1.610
41 64.29 63.73 4864 4006 39.83 39.75 3925 19% 1610
43 64.94 64.80 4735 40.06 39.83 39.75 3.925 1.9 1.610
45 65.09 65.06 66.00 4006 3983 39.75 3925 199 1.610
47 65.12 65.11 65.27 40.06 39.83 39.75 3.925 1.9%4 1.610
49 65.12 65.12 65.14 40.06 39.83 39.75 3925 199 1.610
51 65.12 65.12 65.12 40.06 39.83 39.75 3.925 1.994 1.610
53 65.12 65.12 65.11 40.06 3983 39.75 3925 199 1.610
55 65.12 65.12 65.11 40.06 39.83 39.75 3.925 1.994 1.610

is highly inaccurate, but taking N=47 results in
four-digit convergence (A=155.5).

It is also interesting to note in Table 1 that the
convergence is not monotonic. That is, the
eigenvalues (A4) oscillate about the exact values
as N is increased, rather than approaching them
from one direction.

Buckling loads are obtained by setting 4=0 in
the frequency determinants, thus establishing the
load which reduces a natural frequency to zero.
The lowest load thus determined is the critical
buckling load.

Table 2 exhibits convergence studies for the
critical buckling moments (i.e, @=2) of plates

with aspect ratio (a/b) of 2.3, for all nine
possible, but distinct, combinations of the
boundary conditions described by Egs. (21). Thus,
for example, the SS-F-S5-C plate (see Fig. 1) has
a much lower critical moment (M/D =3.925) than
that of the SS-C-SS-F plate (M/D =65.11). The SS
edge conditions are abbreviated (to S) in Table 2.
One also observes in Table 2 that the critical
buckling mode shape of the SS-F-S55-C plate has
only one half-wave in the loaded (x) direction
(m=1), whereas the SS-C-SS-F plate has five. As
before, it is seen that more terms of the power
series are needed for four-digit convergence

when more half-waves are in the mode shape.
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Free Vibrations and Buckling of Rectangular Plates with Linearly Varying In-Plane Loading

4. SOME FREE VIBRATION
RESULTS

One interesting configuration for which no
free-vibration results have been previously
published is the rectangular plate having three
edges simply supported and one free, subjected
to in-plane edge moments (e, ®=2) at its
opposite ends. Particularly interesting is the
situation when the free edge is in tension, which
is an S5-55-55-F plate in our notation.

Table 3 lists the first five nondimensional

frequencies (1) for three aspect ratios (a/b=05,

1, 2), with end moments M/M, =0, 05, 095

applied, where M. is the critical buckling
moment for the plate. The results show that
some of the frequencies decrease with increasing

M, but others increase, and some first increase

Table 3. Nondimensional frequencies *=®’yph/D
and critical buckling moments M. =M, /D

for an SS-SS-SSF plate (v =0.3)
subjected to end moments.
M | mode a/b
Mo | sequence 05 1 2
1 [1030 (L) 1168 (1) 1613 (1,1)
2 | 1477 (12 2776 (12) 4674 (2)
0 3 | 2B62(13) 4120 Q1) 7528 (12
4 | 3713 (14 5907 22 %04 (31)
5 3977 1) 6186 (1,3) 1110 (22)
1 [1026 (1L1) 1706 (11) 4228 (1,1)
2 | 1834 (12) 3554 (12) 6935 (21)
05| 3 |2466(13) 4104 21) 831 (12)
4 | 3744 (14) 2% (13) 1079 (31)
5 3889 21) 7336 (22 1396 (22)
1 | 3468 (1) 8265 (1) 3705 (3)
2 | 207712 1387 21) 4126 (1)
095 | 3 |2684(13) 4354 (12 4443 (1))
4 | 325421 6197 31) 8244 (41)
5 | 3797 (14) 6485 (13) 9540 (12)
M, /D 4198 (11) 4198 1) 3924 (31)

Note: The numbers in parentheses indicate (m,n) where m
and n are the numbers of partial waves in the x
and y directions, respectively, of a mode shape

sl (man=(1,2)

(m,n)=(2,1)

L (man)=(1,1)

2100 80 -60 -40 -20 O 20 40 60 80 100

Fig. 3. Nondimensional frequencies
Azwa’Jph/D  ys.  nondimensional
moment M’ (=M/D) for an SS-C-SS-
C plate with @/b=1 and a=2.

and then decrease. Thus, for some of the modes,
the stabilizing effect of tension near the free
significant than the
destabilizing effect of compression along the

edge (y=b) is more

simply supported edge (y=0). This causes some

of the frequencies to increase as M/M. is
increased. But, eventually, the frequency for each
mode decreases as the buckling moment for that
mode is approached, and ultimately becomes
zero with further increase in M. In following
these trends in Table 3, one must consider a
given mode, preserving one set of wave
numbers (m, 1), as M is changed.

Similar trends are exhibited in Fig. 3 for the
SS-C-SS-C square plate loaded by end moments.
For no loading (M=0), the first three frequencies
correspond to (1,1), (21) and (1,2) mode shapes,
in that order. As M is applied, the first two
frequencies decrease, the first one gradually and
the second one rapidly, but the third frequency
increases slightly. Eventually, as M is increased
further, the (2,1) frequency curve crosses the
(L,1) curve, and the plate buckles in a (21)
mode. The (1,1) mode has a higher buckling
moment. The (1,2) frequency decreases (beyond
the abscissa limit of Fig. 3) and eventually goes

24 -
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Fig. 4. Free vibration mode shape contour
plots of SS-SS-SS-F plates with
in-plane pure bending moments for

a/b=05 and Vv =0.3. (Maximum
displacements marked with x.)

to zero at a large value of M/D .
Figures 4, 5 and 6 show contour plots of the
free vibration mode shapes of SS-S5-55-F plates

M/MCf =0 M/MCY' #)05 M/ML‘T =0-95

Mode 1

ol | <

@ Mode 2

Mode 4

Mode 5

00k iS¢

Fig. 5. Free vibration mode shape contour
plots for SS-SS-SS-F plates with
in-plane pure bending moments for

a/b=1 and Vv =0.3. (Maximum
displacements marked with x.)

corresponding to the frequencies listed in Table
3. It is interesting to note how the contour lines
shift downward (ie, toward the simply
supported, compressive lateral plate edge) as the
end moment M is increased. This is true for all

modes. For the (1,1) mode, which corresponds to

the first frequency (except for a/b=2, M/M,
=0.95), the point of maximum displacement
moves from the free edge into the plate interior,
and toward the SS lateral edge.
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Free Vibrations and Buckling of Rectangular Plates with Linearly Varying In-Plane Loading

M/MCT =O

M/MCV =O-5
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Fig. 6. Free vibration mode shape contour plots for SS-SS-SS-F plates with in-plane pure

bending moments for a/b =2 and vV =0.3. (Maximum displacements marked with x.)

5. SOME BUCKLING RESULTS

It is interesting to observe how the critical

buckling load varies as @ changes. An example
of this is shown in Fig. 7, where N [D s

plotted versus a/b for S5-C-SS-C plates. The
case of uniform edge loading (@ =0) is a classic
one, for which a closed form solution for w(x,y)
exists, and is displayed in many places,
including the classic monographs of Timoshenko
and Gere” and Volmir® This appears as the

lowest envelope curve of Fig. 7, and shows the

well known fact that the critical mode shape has
an increasing number (m) of longitudinal half

waves as the length-to-width ratio (a/b)
increases. The critical modes all have only one
partial wave in the y-direction.

Figure 7 also shows critical loads for the other
linearly varying edge loadings exhibited in Fig. 2
(®=05, 1, 1.5, 2), obtained by the present power
series method of analysis. As one increases &
the buckling load parameter Nob*/D is seen to

increase, as expected, because for a fixed No the

longitudinal force (i.e., the integral of 0. over

=24 -

rek
OH

21z ey
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m=1 m=2 m=3 m=4 m=5 m=6

350

300

250

150

100

504 m=1 m=2 m=3 m=4

0" 02040608 1 12141.61.8 2 22242628 3 ab
Fig. 7. Nondimensional critical buckling load

N"=Np* /D ys. aspect ratio @/b for
SS-C-SS-C plates.

Table 4. Critical buckling loads?. =N.+*/D
for SS-F-SS-F plates.

o
0 05 1 15 2
0| 3948 4968 5917 6828 7776
05103 | 3842 4762 5526 6243 6978
05| 3566 4323 4877 5397 5933
0980 1295 1756 2354 3031
1]03] 939 1227 1621 2079 2573
05| 8352 1084 1398 1735 20.89
0| 2467 3277 4774 7911 13.82
2103 2292 3040 4389 6990 11.26
05| 1949 2583 3702 5738 8816

alb| v

example, with @/b=28 the critical mode shape
changes from m=4 for & =0, to m=6 for & =2.
The case of the SSF-SSF plate is a
particularly important one. Table 4 displays
critical buckling loads Ny, =N,b*/D for such
plates having various /b (0.5, 1, 2, 5, 10), a
variety of linearly varying loadings (& =0, 0.5, 1,
1.5, 2, as in Fig. 2), and the full range of
possible Poisson’s ratios for an isotropic material
(v=0, 03, 0.5). For =0 (uniform loading) and
v =(), one observes that the critical buckling load
is exactly that of an Euler column 7 *[(a/by*;
that is, for v =0, there is no transverse (y)
curvature in the mode shape. Nonzero V

induces transverse curvature (i.e, anticlastic
bending). It would appear from Table 4 that

increasing v causes decreased M., but that is
not the case, for D =Er*/121-v?) depends
upon V. A proper comparison of load
parameters (12N,b*/ER’) shows with a/b=l,
for example, that N increases by 12.8 percent

as Vincreases from 0 to 0.5.

Looking further at Table 4, for other @, N,
increases with increasing @, as it did for the
SS-CSS-C plate in Fig. 7. Further, as @
increases, the effect of vV becomes significantly
different. For example, for 4/b=1 and o=2
(in-plane moment) there is an 8.1 percent

decrease in critical loading as V increases from

0103948 0521 0783 1508 5365
5 (03] 03608 04807 07165 1360 4.2%
05]0292 0396 0595 1118 3309
0 [0.09870 01316 01971 03%0 2670
10 {03 10.08%91 0119 01795 03541 2133
05007422 009894 01481 02916 1.638

the plate width) decreases. Not only do the
curves shift upward with increasing ¢, but the

number of longitudinal half-waves increases; for

0 to 05, as compared with the 12.8 per cent
increase described above for & =0. It should also
be mentioned here that all the critical mode
shapes for the SS5-C-55-C plate have m=1, for all
o, a/b and v.

Contour plots (lines of constant displacement)
of the critical buckling mode shapes for
SS-F-SS-F plates are displayed in Fig. 8 for plates
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alb=0.5

A

a/b=1

AT A

=S\

alb=5, v =03

Fig. 8. Critical buckling mode shapes for SS-F-SS-F plates having various aspect ratios (a/b),
loaded by in-plane moments (¢ =2) (points shown with X at a maximum displacement).

n=y/b
1

having a/b=0.5, 1, 2, and 5. In each case, the

maximum transverse displacement in the mode
shape occurs longitudinally in the middle
(x=a/2) of the plate, and at the edge subjected to

0.8

06 maximum compressive stress (y=0). For short

plates (small a/b) the plate is seen to have
04 anticlastic ~ curvature  (negative = Gaussian
curvature) in the mode shape throughout the

o plate, which is also observed in Fig. 9. For long

plates (large a/b) the curvature in the lateral (y)

direction virtually vanishes, as can be seen

0 ) I . )
" YO ' Iy, " " 1 clearly in Fig. 9. Figure 8 also shows that an

m w max

. - . v
Fig. 9. Deflected shapes of the midlines effect of increasing v is to compact the contour

_ o ) lines more densely in the compressive zone,
(*=0a/2) of the critical buckling Y p

mode shapes of SS-F-SS-F plates increasing the lateral curvature of the mode
loaded by in-plane moments, for shape there.
various a/b (for v=0.3). The SS-F-SS-F plate may also be analyzed by

o
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2Ixss| R 109



¥Pz-HEF-2H

Flok

Table 5. Comparison of non-dimensional

critical buckling moments M.,/E¥
of SS-F-SS-F plates from 2-D
plate theory using the power
series method, and 1-D beam
theory. for v =0.3.
a/b
05 1 2 5 10 20 50
1DB 6495 3247 1624 0.06495 0.03247 0.01624 0.006495

2DP 1.065 .3928 1718 0.06557 0.03255 0.01625 0.006495
Ditference(%)|39.0% 17.3% 547% 0.946% 0.246% 0.062% 0%

one-dimensional (1-D) beam theory, as described
by Timoshenko and Gere” in their Chapter 6
devoted to the sideways (called “lateral” there)
instability of beams. Critical buckling end

moments M., /EF’ from the beam theory are
compared in Table 5 with those found from the
more accurate plate theory using the present
power series solution. It is seen there that (for v
=0.3) the beam theory is quite accurate for long
plates, giving a critical moment within one
percent of the plate result for a/b>5, and
agreeing to four significant figures when a/b
=50. However, one also sees that for short plates
(a/b<2) the beam theory is inadequate. The
beam theory does not permit the lateral
curvature that one sees clearly in Fig. 9 for a/b
<2, but assumes that the lateral lines remain
straight, while rotating. The line shown in Fig. 9
for a/b=5 is almost straight.

6. CONCLUDING REMARKS

The exact solution procedure has been used to
obtain a variety of interesting and useful results
for frequencies, buckling loads and mode shapes
of rectangular plates subjected to linearly
varying in-plane stresses. Extensive results for
the SS-F-SS-F plate having end moments only
(@ =2) are also available.”

The displacement functions (w) are expressed

in terms of power series in the lateral (y)
direction. As demonstrated by the results shown
in Tables (1) and (2), extreme care must be taken
to take enough terms in the series. Otherwise,
very poor results may be obtained, even though
as many as 30 terms are used. The power series
are transcendental functions, similar to others
commonly encountered in structural mechanics
(e.g., trigonometric, hyperbolic, Bessel) which are
also evaluated as power series, except that
present ones have no “name” assigned to them.

Besides the clamped, simply supported or free
edge conditions along the edges y = 0 and b
(Fig. 1), these edges could also be restrained
elastically (but uniformly) by adjacent support
structure, in both transverse displacement
and/or rotation, and the solution procedure
would proceed straightforwardly. For the
vibration problem, these edges could also have
uniform attached mass and/or rotational inertia,
perhaps also representing the support structure,
with no restriction in the solution.

However, the in-plane boundary stresses
cannot be generalized to others beyond that
given by Eq. (3) for this exact solution method
to apply. For more general boundary stresses,
the plane elasticity problem would first have to
be solved, which would yield in-plane stresses

(6+,9y,%») which would vary with both x and
y. Then the variables separable solution form of
Eq. (6) would no longer apply.
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