• Title/Summary/Keyword: Normal Human Fibroblasts

Search Result 123, Processing Time 0.018 seconds

Anti-wrinkle Effect of Safflower (Carthamus tinctorius L.) Seed Extract (II) (홍화씨추출물의 피부 주름개선 효과(II))

  • Kim Mi Jin;Kim Ja Young;Choi Sang-Won;Hong Jin Tae;Yoon Kyung-Sup
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.4 s.48
    • /
    • pp.449-456
    • /
    • 2004
  • Phytoestrogens derived from plants and foods, which are diphenolic compounds with structural similarities to natural and synthetic estrogens, have been shown to estrogenic and antiestrogenic actions. Particularly, recent study revealed that phenolic compounds in safflower seed, such as serotonin derivatives, lignans and flavonoids, could be acted as phytoestrogens. Safflower (Carthamus tinctorius L.) seed extract (SID C.SE), therefore, are receiving a renewed interest as potential therapeutic source against skin wrinkles induced by estrogen deficiency. This study was conducted to investigate the anti-wrinkle effect of SID C.SE on normal human fibroblasts through the expression of type I procollagen and UVA-induced MMP-1 in vitro. The SID C.SE increased the type I procollagen expression, comparable to trans-retinol and reduced UVA-induced MMP-1 expression in a dose-dependent manner. The clinical study indicated that cream group treated with $0.1\%$ SID C.SE significantly reduced a skin wrinkles, as compared with a control (non-treated cream group) (p<0.05). These results suggest that the safflower seed extract may be useful as potential source of anti-wrinkle cosmetics.

Comparison of Cellular Senescence Phenotype in Human Fibroblasts from New-born and Aged Donors. (신생아와 노인 유래 섬유아세포의 노화과정에서의 세포학적 성질의 비교)

  • Yi, Hye-Won;Hwang, Eun-Seong
    • Journal of Life Science
    • /
    • v.18 no.3
    • /
    • pp.344-349
    • /
    • 2008
  • Normal somatic cells proliferate for a limited number of doublings in culture and then enter an irreversible growth-arrest state called replicative senescence. Replicative senescence has been believed a reason for the limited cellular turnover and deterioration of tissue function in aged animals. However, there is no experimental evidence supporting this assumption. Furthermore, cells from aged person have been poorly characterized with an exception of the cases of T cells. In this study, we examined cell biological changes occurring in replicative senescence of fibroblast strains originated from a new-born (NHF-NB) and a 87 year old man (NHF-87). NHF-87 (and the cells from a 75-year old) proliferated to smaller population doublings and with longer doubling times than NHF-NB did. At early passages, NHF-87 exhibited a low senescence-associated ${\beta}-Gal$ (SA ${\beta}-Gal$) activity and lipofuscin level, typical markers for cellular senescence. Furthermore, they maintained low levels of lysosome and reactive oxygen species (ROS). All of these levels increased dramatically in the late passage NHF-87 quite similarly as those in the late passaged NHF-NB did. These results indicate that most cells originated from the aged maintain a phenotype of the cells originated from new-born donors and undergo replicative senescence with the same kinetics as that of the cells from new-born. It is also indicated that not SA ${\beta}-gal$ activity but cell proliferation rate may be qualified as a biomarker for cells aged in vivo.

Inhibitory Effect of Rosa multiflora hip Extract on UVB-induced Skin Photoaging in Hs68 Fibroblasts (자외선으로 유도된 Hs68 섬유아세포의 노화 반응에 대한 영실추출물의 억제 효능)

  • Park, Ji-Eun;Kim, Hyoung Ja;Kim, Su-Nam;Kang, Seung Hyun;Kim, Youn Joon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.4
    • /
    • pp.351-359
    • /
    • 2015
  • Acute and chronic ultraviolet (UV) irradiation triggers severe skin photoaging processes, which directly disrupt the normal three-dimensional integrity of skin. UV light stimulates the expression of matrix metalloproteinases (MMPs) which degrade constituents of extracellular matrix (ECM) proteins. These MMPs reduce collagen synthesis and decrease skin elasticity and integrity, resulting in wrinkle formation. In this study, we identified Rosa multiflora hip extract (RME) as an effective anti-photoaging ingredient. First, cell proliferation activity of RME was verified using Hs68 human dermal fibroblast cell line. RME downregulated MMPs expression through the inhibition of activator protein (AP)-1. In addition, type I and IV collagen expressions were increased with RME treatment and UVB-induced inflammatory responses were also reduced after RME treatment. In conclusion, R. multiflora hip extract may effectively improve UVB-induced skin aging and wrinkle formation which may provide as an anti-aging, anti-wrinkle, and anti-inflammation ingredient in cosmetic industry.

A Study on Anti-oxidant and Anti-wrinkle Effect of Supercritical Fluid Extraction of Black Carrot as a Functional Cosmetic Material (기능성화장품소재로서 자색당근 초임계추출물의 항산화 및 항주름 효능 연구)

  • Kim, Ji-Su;Lee, Ji-An
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.12
    • /
    • pp.236-243
    • /
    • 2021
  • The aim of this study was to evaluate the anti-oxidant and anti-wrinkle effect of the black carrot(BC) extracted by supercritical dioxide(SC-CO2). DPPH/ABTS radical scavenging and total polyphenol contents were measured to investigate the anti-oxidant activity of the BC supercritical extract. Collagen production and MMP-1 expression were assessed in normal human dermal fibroblasts(NHDF) for anti-wrinkle activity, The black carrot extract showed the highest total phenolic content(9.037±1.123 mg GAE/g extract) and the best antioxidant properties as shown by DPPH and ABTS assay. The supercritical fluid extracts of black carrot exhibited low toxicity to NHDF cells. In addition, the supercritical fluid extracts showed MMP-1 inhibition and type I pro-collagen synthesis inducing activities in a dose-dependent manner, respectively. Therefore, these results suggest that the black carrot is a potential source of high anti-oxidative, solvent-free and anti-aging material with promising applications in cosmetic, food, and beauty-food industries.

Glycation Inhibitory and Antioxidative Activities of Ergothioneine (에르고티오네인의 당화 억제 및 항산화 활성에 관한 연구)

  • Bae, Jun-Tae;Lee, Chung-Hee;Lee, Geun-Soo;Kim, Jin-Hwa;Hong, Jin-Tae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.45 no.2
    • /
    • pp.151-159
    • /
    • 2019
  • Ergothioneine has been known as an excellent antioxidant and a cellular protector against oxidative damage in vivo. In the present study, ergothioneine was demonstrated to possess antioxidant and anti-glycation activities. The radical scavenging activity of ergothioneine enhanced the viability of human dermal fibroblasts (HDFs) exposed to ultraviolet (UV) light. The UVA irradiation increased the proportion of senescence-associated ${\beta}$-galactosidase (SA-${\beta}$-gal) positive cells in comparison with the normal control group. The treatment of UVA-irradiated HDFs with ergothioneine decreased the level of SA-b-gal (by approximately 45% at an ergothioneine concentration of $400{\mu}M$) compared with the UVA-irradiated HDFs. We also found that ergothioneine inhibited production of glyceraldehyde-derived advanced glycation endproducts (AGEs) in a concentration-dependent manner. The ergothioneine educed carboxymethyl-lysine (CML) expression in comparison to the glyoxal treatment. In addition, in the Western blot analysis, treatment of glyoxal-stimulated HDFs with ergothioneine resulted in a dose-dependent decrease in the expression level of the receptor for AGE (RAGE). These results suggest that ergothioneine may have potent anti-aging effects and could be used as a cosmetic material against cellular accumulation of AGEs.

Effect of Skin Elasticity Improvement and Anti-oxidant Activity of Stem Cells Extract Derived from Cambium of Aloe (알로에 형성층 유래 줄기세포 추출물의 항산화 활성 및 피부탄력 개선 효과)

  • Dong-Myong Kim;Won-Jin Kim;Hyung-Kon Lee;Yong-Seong Kwon;Yeon-Mea Choi
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.2
    • /
    • pp.169-176
    • /
    • 2023
  • In this study, stem cells were extracted from the callus derived from the aloe cambium, and the antioxidant activity and effect of skin elasticity improvement were assessed. The aloe cambium-derived stem cell extract, AloStem and callus showed the survival rate of each 98.27% and 71.31%. In the results of the DPPH antioxidant activity of AloStem and aloe extract, it was confirmed that the antioxidant effect of AloStem was more than twice that of Aloe extract. AloStem did not affect the cytotoxicity of normal human dermal fibroblasts (NHDF) cells up to 0.25% concentration. Also, AloStem increased elastin, COL1A1 and HAS2 mRNA expression levels dose-dependently. Furthermore, to examine lifting effect of skin elasticity using a sheet mask containing AloStem, 21 adult men and women applied the sheet mask in the face, once a day for 2 weeks. As a result, after 2 weeks the skin length was 116.75 ± 5.58 mm before the use of the sheet mask, but after 2 weeks of use, it was confirmed that 0.59% increased to 117.44 ± 5.17 mm. Thus, we concluded that the sheet mask containing AloStem can help the lifting effect of skin elasticity.

The Studies on the Development of Low Irritable Preservative System with Phenoxyethanol in Cosmetics (Phenoxyethanol을 이용한 저자극 방부시스템 개발에 관한 연구)

  • Ahn, Gi-Woong;Lee, Chn-Mong;Kim, Hyeong-Bae;Jeong, Ji-Hen;Jo, Byoung-Kee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.1 s.49
    • /
    • pp.43-49
    • /
    • 2005
  • Recently, according as people who have sensitive skin increase, we've been giving more importance to the safety of cosmetics. Especially, preservative is known to be one of the main stimuli which cause side-effects of cosmetics. However, there have been few reports describing cell cytotoxicity, skin penetration, oil-aqueous phase partition, anti-microbial activity of preservatives and their correlation with skin irritation. The study is aimed to develop low irritable preservative system with phenoxyethanol, one of the most commonly used preservatives in cosmetics, considering various factors mentioned above. According to our results of cell cytotoxicity against human normal fibroblasts by means of MTT assay, phenoxyethanol showed the lowest cytotoxicity when compared to other preservatives tested (cytotoxicity: pro-pylparaben > butylparaben > ethylparaben > methylparaben > triclosan > phenoxyethanol), but human patch test for assessing shin primary irritation revealed that phenoxyethanol has higher skin irritation than methylparaben and triclosan. We performed in vitro skin penetration test using horizontal Franz diffusion cells with skin membrane prepared from hairless mouse (5 ${\~}$ 8 weeks, male) to evaluate the rate of skin penetration of preservatives. From the results, we found that the higher irritable property of phenoxyethanol in human skin correlates with its predominant permeability (skin penetration: phenoxyethanol > methylparaben > ethylparaben > propylparaben > butylfaraben > triclosan). Therefore, we made an effort to reduce skin permeability of phenoxyethanol and found that not only the rate of skin penetration of phenoxyethanol but also its skin irritation is dramatically reduced in formulas containing oils with low polarity. In the experiments to investigate the effect of oil polarity on the oil-aqueous phase partition of phenoxyethanol, more than $70\%$ of phenoxyethanol was partitioned in aqueous phase in formulas containing oils with low polarity, while about $70 {\~} 90\%$ of phenoxyethanol was partitioned in oil phase in formulas containing oils with high polarity. Also, in aqueous phase phenoxyethanol showed greater anti-microbial activity. Conclusively, it appears that we can develop less toxic preservative system with reduced use dosage of phenox-yethanol and its skin penetration by changing oil composition in formulas.

Reduction of Mitochondrial Electron Transferase in Rat Bile duct Fibroblast by Clonorchis sinensis Infection (간흡충(Clonorchis sinensis)감염에 의한 흰쥐 담관 섬유모세포 미토콘드리아 전자전달효소의 감소)

  • Min, Byoung-Hoon;Hong, Soon-Hak;Lee, Haeng-Sook;Kim, Soo-Jin;Joo, Kyoung-Hwan
    • Applied Microscopy
    • /
    • v.40 no.2
    • /
    • pp.89-99
    • /
    • 2010
  • Fibroblasts are the most common cells in connective tissue and are responsible for the synthesis of extracellular matrix components. The fibrosis associated with chronic inflammation and injury may contribute to cholangiocarcinoma pathogenesis, particularly through an increase in extracellular matrix components, which participate in the regulation of bile duct differentiation during development. Mitochondria produce ATP through oxidative metabolism to provide energy to the cell under physiological conditions. Also, mitochondrial dysfunction and oxidative stress have been implicated in cellular senescence and aging. Alternations in mitochondrial structure and function are early events of programmed cell death or apoptosis and mitochondria appear to be a central regulator of apoptosis in most somatic cell. Clonorchis sinensis, one of the most important parasite of the human bile duct in East Asia, arouses epithelial hyperplasia and ductal fibrosis. Isolated fibroblast from the bile ducts of rats infected by C. sinensis showed increase of cytoplasmic process. In addition, decrease of cellular proliferation was observed in fibroblasts which was isolated from normal rat bile duct and then cultured in media containing C. sinensis excretory-secretory product. However, the effects of C. sinensis infection on the mitochondrial enzyme distribution is not clearly reported yet. Therefore, we investigated the structural change of C. sinensis infected bile duct and mitochondrial enzyme distribution of the cultured fibroblast isolated from the C. sinensis infected rat bile duct. As a result, C. sinensis infected SD rat bile ducts showed the features of chronic clonorchiasis, such as ductal connective and epithelial tissue dilatation, or ductal fibrosis. In addition, fibroblast in ductal connective tissue was damaged by physical effect of fibrotic tissue and chemical stimulation. Immunohistochemically detected mitochondrial electron transferase (ATPase, COXII, Porin) was decreased in C. sinensis infected rat bile duct and cultured fibroblast from infected rat bile duct. It can be hypothesized that the reason why number of electron transferase decrease in fibroblast isolated from the rat bile duct infected with C. sinensis is because dysfunction of electron transport system is occurred mitochondrial dysfunction, increase of ROS (reactive oxygen species) and apoptosis after chemical damage on the cell caused by C. sinensis infection. Overall, C. sinensis infection induces fibrotic change of ductal connective tissue, mutation of cellular metabolism in fibroblast and mitochondrial dysfunction. Consequently, ductal fibrosis inhibits fibroblast proliferation and decreases mitochondrial electron transferase on fibroblast cytoplasm. It was assumed that the structure of bile duct could not normalized and ductal fibrosis was maintained for a long period of time according to fibroblast metamorphosis and death induced by mitochondrial dysfunction.

Anti-aging Effects of L-Carnitine on Human Skin (L-카르니틴의 사람피부에 대한 항노화 효과)

  • Lee Bum-Chun;Choe Tae-Boo;Sim Gwan-Sub;Lee Geun-Soo;Park Sung-Min;Lee Chun-Il;Pyo Hyeong-Bae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.3 s.47
    • /
    • pp.393-397
    • /
    • 2004
  • L-Carnitine $({\beta}-hydroxy-{\gamma}-trimethyl-ammoniumbutyric{\;}acid)$ is a small water-soluble molecule important in mammalian fat metabolism. It is essential for the normal oxidation of fatty acids by the mitochondria, and is involved in the trans-esterification and excretion of acyl-CoA esters. In this paper, to investigate the relationship between aging and L-carnitine, we investigated the effects of in vitro matrix-metalloproteinase (MMP) inhibition and activity and expression of UYA-induced MMPs in human skin fibroblasts. Also, we studied to develop as anti-aging cosmetics with L-carnitine. Fluorometric assays of the proteolytic activities of MMP-1 (collagenase) were performed using fluorescent collagen substrates. ELISA (enzyme linked immune sorbent assay), gelatin-substrate zymography, RT-PCR ELISA techniques were used for the effects of L-carnitine on MMP expression, activity, and MMP mRNA expression in UVA irradiated fibroblast $(5\;J/cm^2)$, respectively. In addition, we performed clinical study with L-carnitine cream. L-carnitine inhibited the activities of MMP-1 in a dose-dependent manner and the $IC_{50}$ values calculated from semi-log plots were 2.45 mM, and L-carnitine showed strong inhibition on MMP-2 (gelatinase) activity in UVA irradiated fibroblast by zymography. Also, UVA induced MMP-1, 2 expression was reduced $43\%,\;53\%$ by treated with L-carnitine at 1.25 mM, and MMP-1 mRNA expression was reduced dose-dependent manner. Therefore L-carnitine was able to significantly inhibit the MMP activity, and regulate MMP expression in protein and mRNA level. The results of clinical study showed that $1.0\%$ L-carnitine treated group reduced wrinkle significantly compared with placebo treated group (P<0.05). All these results suggest that L-carnitine may be useful as new anti-aging cosmetics for protection against UVA induced Mm expression and activity.

Effect of the Hexane Extract of Saussurea lappa on the Growth of HT-29 Human Colon Cancer Cells (목향 헥산추출물이 대장암세포인 HT-29 세포의 증식에 미치는 영향)

  • Kim, Eun-Ji;Park, Hee-Sook;Lim, Soon-Sung;Kim, Jong-Sang;Shin, Hyun-Kyung;Yoon, Jung-Han
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.2
    • /
    • pp.207-214
    • /
    • 2008
  • In Asia Saussurea lappa (SL) has been used as a traditional herbal medicine to treat abdominal pain and tenesmus. Recently, in vitro cell culture studies have shown that SL has anti-ulcer, anti-inflammatory, and anti-tumor properties. To explore its potential chemopreventive and chemotherapeutic effects in colon cancer, we examined whether the hexane extract of SL (HESL) could inhibit the growth of HT-29 human colon cancer cells, and investigated the mechanisms for this effect. The cells were cultured with various concentrations (0-5 ${\mu}g/mL$) of HESL. The results indicated that HESL markedly decreased the numbers of viable HT-29 cells; whereas at the concentration of 5 ${\mu}g/mL$, HESL slightly decreased the viable cell numbers of CCD 1108Sk human skin normal fibroblasts at 72 hr. HESL substantially increased the numbers of cells in the sub G1 phase, and dose-dependently increased apoptotic cell numbers. Western blot analysis of the total cell lysates revealed that HESL increased Bax protein levels, but did not affect Bcl-2 levels. HESL induced the cleavage of poly (ADP-ribose) polymerase and caspases 8, 9, 7, and 3. This study demonstrated that HESL inhibits cell growth and induces apoptosis in HT-29 cells, which may be mediated by its ability to increase Bax levels and activate the caspase pathway. These findings may lead to the development of new therapeutic strategies for colon cancer treatment.