Browse > Article
http://dx.doi.org/10.22156/CS4SMB.2021.11.12.236

A Study on Anti-oxidant and Anti-wrinkle Effect of Supercritical Fluid Extraction of Black Carrot as a Functional Cosmetic Material  

Kim, Ji-Su (Dept. of Beauty Art, Graduate School, Seokyeong University)
Lee, Ji-An (Dept. of Beauty Therapy & Make-up, College of Beauty Art, Seokyeong University)
Publication Information
Journal of Convergence for Information Technology / v.11, no.12, 2021 , pp. 236-243 More about this Journal
Abstract
The aim of this study was to evaluate the anti-oxidant and anti-wrinkle effect of the black carrot(BC) extracted by supercritical dioxide(SC-CO2). DPPH/ABTS radical scavenging and total polyphenol contents were measured to investigate the anti-oxidant activity of the BC supercritical extract. Collagen production and MMP-1 expression were assessed in normal human dermal fibroblasts(NHDF) for anti-wrinkle activity, The black carrot extract showed the highest total phenolic content(9.037±1.123 mg GAE/g extract) and the best antioxidant properties as shown by DPPH and ABTS assay. The supercritical fluid extracts of black carrot exhibited low toxicity to NHDF cells. In addition, the supercritical fluid extracts showed MMP-1 inhibition and type I pro-collagen synthesis inducing activities in a dose-dependent manner, respectively. Therefore, these results suggest that the black carrot is a potential source of high anti-oxidative, solvent-free and anti-aging material with promising applications in cosmetic, food, and beauty-food industries.
Keywords
Black carrot; Anti-aging; Anti-wrinkle; Anti-oxidant; Supercritical extraction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Faxin, M. W. Kim & J. A. Lee. (2021). Study on leaf of Paederia foetida and Paederia scandens for cosmetic materials. Korean Society of Cosmetics and Cosmetology, 11(1), 121-128. http://www.kscc2011.co.kr/
2 S. H. Park et al. (2019). Loliolide presents antiapoptosis and antiscratching effects in human keratinocytes. International Journal of Molecular Sciences, 20(3), 651-667. DOI : 10.3390/ijms20030651.   DOI
3 C. Desmarchelier, M. J. Novoa Bermudez, J. Coussio, G. Ciccia & A. Boveris. (1997). Antioxidant and prooxidant activities in aqueous extracts of Aregentine plants. International Journal of Pharmacognosy, 35(2), 116-120. DOI : 10.1076/phbi.35.2.116.13282   DOI
4 P. Pittayapruek, J. Meephansan, O. Prapapan, M. Komine & M. Ohtsuki. (2016). Role of matrix metalloproteinases in photoaging and photocarcinogenesis International Journal of Molecular Sciences, 17(6), 868. DOI : 10.3390/ijms17060868   DOI
5 J. Zhou, B. Gullon, M. Wang, P. Gullon, J. M. Lorenzo & F. J. Barba. (2021). The application of supercritical fluids technology to recover healthy valuable compounds from marine and agricultural food processing by-products: a review. Process, 9(2), 357-378. DOI : https://doi.org/10.3390/pr9020357   DOI
6 P. A. Uwineza & A. Waskiewicz. (2020). Recent advances in supercritical fluid extraction of natural bioactive compounds from natural plant materials. Molecules, 25(17), 3847-3869. DOI : 10.3390/molecules25173847   DOI
7 T. Ahmad, M. Cawood, Q. Iqbal, A. Arino, A. Batool, R. Muhammad, S. Tariq, M. Azam & S. Akhtar. (2019). Phytochemicals in Daucus carota and their health benefits-review article. Foods, 8(9), 424-445. DOI : 10.3390/foods8090424   DOI
8 A. Purkiewicz, J. Ciborska, M. Tanska, A Narwojsz, M. starowicz, K. E. Przybylowicz & T. Sawicki. (2020). The impact of the method extraction an different carrot variety on the carotenoid profile, total phenolic content and antioxidant properties of juices. Plants, 9(12), 1759-1771. DOI : 10.3390/plants9121759   DOI
9 H. Poudyal, S. Panchal & L. Brown. (2010). Comparison of purple carrot juice and β-carotene in a high-carbohydrate, high-fat diet-fed rat model of the metabolic syndrome. British Journal of Nutrition, 104(9), 1322-1332. DOI : 10.1017/S0007114510002308   DOI
10 Z. S. Xu, J. Ma, F. Wang, H. Y. Ma, Q. X. Wang & Z. S. Xiong. (2016). Identification and characterization of DcUCGalT1, a galactosyltransferase responsible for anthocyanin galactosylation in purple carrot(Daucus carota L.) taproots. Scientific reports, 6, 1-10. DOI : 10.1038/srep27356   DOI
11 AOAC. (1980). Official Methods of Analysis. 13 th ed., Association of Official Analytical Chemists. (pp. 376-384). Washington D.C, USA. DOI : 10.1002/jps.2600700437
12 S. Park, S. Kang, D. Y. Jeong, S. Y. Jeong & M. J. Kim. (2016). Black carrots fermented with Lactobacillus plantarum or Aspergillus oryzae prevent cognitive dysfunction by improving hippocampal insulin signalling in amyloid-β infused rats. Journal of Functional Foods, 25(4), 354-366. DOI : 10.1016/j.jff.2016.06.018   DOI
13 G. R. soares, C. F. G. Moura, M. J Silva, W. Vilegas, A. B. Santamarina, L. P. Pisani, D. Estadella & D. A. Ribeiro. (2018). Protectvie effects of purple carrot extract (Daucus carota) against rat tongue carinogenesis induced by 4-nitroquinoline 1-oxide. Medical Oncology, 35(54), 1-14. DOI : 10.1007/s12032-018-1114-7   DOI
14 R. Liu, H. S. Choi, S-L Kim, J. H. Kim, B. S. Yun & D. S. Lee. (2020). 6-Methoxymellein isolated from carrot(Daucus carota L.) targets breast cancer stem cells by regulating NF-κB signaling. Molecules, 25(19), 4374-4387. DOI : 10.3390/molecules25194374   DOI
15 J. Y. Ryu, S. J. Rhie, K. H. Lim, Y. E. Choi, H. S. Han, H. O. Yang & E. J. Na. (2019). Inhibitory effects of prunin on photo-aging in human keratinocytes (HaCaT) damaged by UVB radiation. Asian journal of Beauty & Cosmetology, 17(1), 139-147. DOI : 10.20402/ajbc.2019.0275   DOI
16 M. S. Blois. (1958, April). Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199-1200. DOI : https://www.nature.com/articles/1811199a0   DOI
17 R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang & C. R. Evans. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. DOI : 10.1016/s0891-5849(98)00315-3   DOI
18 Y. Wang, E. S. Kim & J. A. Lee. (2018). The study of antioxidant and anti-inflammatory effects of notoginseng root(NGR) hot water extracts. Journal of the Korean Society of Cosmetoloy, 24(5), 1014-1020. https://www.cosmetology.co.kr
19 M. algarra, A. Fernandes, N. Mateus, V. Freitas, J. C.G. E. Silva & J. Casado. (2014). Anthocyanin profile and antioxidant capacity of black carrots (Daucus carota L. ssp. sativus var. atrorubens Alef.)from Cuevas Bajas, Spain. Journal of Food Composition and Analysis, 33(1), 71-76. DOI : 10.1016/j.jfca.2013.11.005   DOI
20 R. L. Prior, X. Wu & K. Schaich. (2005). Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of Agricultural and Food Chemistry, 53(10), 4290-4302. DOI : 10.1021/jf0502698   DOI
21 A. Mauviel, J. Heino, V. M. Kahari, D. J. Hartmann, G. Loyau, J. P Pujol & E. vuorio. (1991). Comparative effects of interleukin-1 and tumor necrosis factor-α on collagen production and corresponding procollagen mRNA levels in human dermal fibroblasts. The Journal of Investigative Dermatology, 96(2), 245-249. DOI : 10.1111/1523-1747.ep12462185   DOI
22 M. S. Agren, R. Schnabel, L. H. Christensen, U. Mirastschijski. (2015). Tumor necrosis factor-α-accelerated degradation of type I collagen in human skin is associated with elevated matrix metalloproteinase (MMP)-1 and MMP-3 ex vivo. European Journal of Cell Biology, 94(1), 12-21. DOI : 10.1016/j.ejcb.2014.10.001   DOI
23 J. Zhen, T. S. Villani, Y. Guo, Y. Qi, K. Chin, M. H. Pan, C. T. Ho, J. E. Simon & Q. Wu. (2016). Phytochemistry antioxidant capacity, total phenolic content and anti-inflammatory activity of Hibiscus sabdariffa leaves. Food Chemistry, 190(1), 673-680. DOI : 10.1016/j.foodchem.2015.06.006   DOI
24 A. Downham & P. collins. (2000). Colouring our foods in the last and next millennium. International Journal of Food Science and Technology, 35(1), 5-22. DOI : 10.1046/j.1365-2621.2000.00373.x   DOI