Browse > Article
http://dx.doi.org/10.15230/SCSK.2019.45.2.151

Glycation Inhibitory and Antioxidative Activities of Ergothioneine  

Bae, Jun-Tae (R&D Center, J2KBIO)
Lee, Chung-Hee (R&D Center, It's Hanbul)
Lee, Geun-Soo (R&D Center, It's Hanbul)
Kim, Jin-Hwa (R&D Center, It's Hanbul)
Hong, Jin-Tae (College of Pharmacy and Medical Research Center, Chungbuk National University)
Publication Information
Journal of the Society of Cosmetic Scientists of Korea / v.45, no.2, 2019 , pp. 151-159 More about this Journal
Abstract
Ergothioneine has been known as an excellent antioxidant and a cellular protector against oxidative damage in vivo. In the present study, ergothioneine was demonstrated to possess antioxidant and anti-glycation activities. The radical scavenging activity of ergothioneine enhanced the viability of human dermal fibroblasts (HDFs) exposed to ultraviolet (UV) light. The UVA irradiation increased the proportion of senescence-associated ${\beta}$-galactosidase (SA-${\beta}$-gal) positive cells in comparison with the normal control group. The treatment of UVA-irradiated HDFs with ergothioneine decreased the level of SA-b-gal (by approximately 45% at an ergothioneine concentration of $400{\mu}M$) compared with the UVA-irradiated HDFs. We also found that ergothioneine inhibited production of glyceraldehyde-derived advanced glycation endproducts (AGEs) in a concentration-dependent manner. The ergothioneine educed carboxymethyl-lysine (CML) expression in comparison to the glyoxal treatment. In addition, in the Western blot analysis, treatment of glyoxal-stimulated HDFs with ergothioneine resulted in a dose-dependent decrease in the expression level of the receptor for AGE (RAGE). These results suggest that ergothioneine may have potent anti-aging effects and could be used as a cosmetic material against cellular accumulation of AGEs.
Keywords
ergothioneine; advanced glycation end products; anti-glycation; antioxidant; anti-aging;
Citations & Related Records
연도 인용수 순위
  • Reference
1 N. Ahmed, Advanced glycation endproducts-role in pathology of diabetic complications, Diabetes Res. Clin. Pract., 67(1), 3 (2005).   DOI
2 S. Rahbar and J. L. Figarola, Novel inhibitors of advanced glycation endproducts, Aach. Biochem. Biophys., 419(1), 63 (2003).   DOI
3 S. R. Thorpe and J. W. Baynes, Role of the Maillard reaction in diabetes mellitus and diseases of aging, Drugs Aging, 9(2), 69 (1996).   DOI
4 A. G. Huebschmann, J. G. Regensteiner, H. Vlassara, and J. E. Reusch, Diabetes and advanced glycoxidation end products, Diabetes Care, 29(6), 1420 (2006).   DOI
5 K. C. Sourris, B. E. Harcourt, and J. M. Forbes, A new perspective on therapeutic inhibition of advanced glycation in diabetic microvascular complications: common downstream endpoints achieved through disparate therapeutic approaches?, Am. J. Nephrol., 30(4), 323 (2009).   DOI
6 A. Elosta, T. Ghous, and N. Ahmed, Natural products as anti-glycation agents: possible therapeutic potential for diabetic complications, Curr Diabetes Rev, 8(2), 92 (2012).   DOI
7 K. Mizutari, T. Ono, K. Ikeda, K. Kayashima, and S. Horiuchi, Photo-enhanced modification of human skin elastin in actinic elastosis by N ${\varepsilon}$-(carboxymethyl) lysine, one of the glycoxidation products of the Maillard reaction, J. Invest. Dermatol., 108(5), 797 (1997).   DOI
8 C. Lohwasser, D. Neureiter, B. Weigle, T. Kirchner, and D. Schuppan, The receptor for advanced glycation end products is highly expressed in the skin and upregulated by advanced glycation end products and tumor necrosis factor-alpha, J. Invest. Dermatol., 126(2), 291 (2006).   DOI
9 R. J. Nijveldt, E. Nood, D. E. C. Hoom, P. G. Boelens, K. Norren, and P. A. M. Leeuwen, Flavonoids: a review of probable mechanisms of action and potential applications, Am. J. Clin. Nutr., 74(4), 418 (2001).   DOI
10 J. L. Mau, H. C. Lin, and S. F. Song, Antioxidant properties of several specialty mushrooms, Food Res. Int., 35(6), 519 (2002).   DOI
11 N. J. Dubost, R. B. Beelman, and D. J. Royse, Influence of selected cultural factors and postharvest storage on Ergothioneine content of common button mushroom Agaricus bisporus (J. Lge) Imbach (Agaricomycetideae), Int. J. Med. Mushrooms., 9(2), 163 (2007).   DOI
12 R. Colognato, I. Laurenza, I. Fontana, F. Coppede, G. Siciliano, S. Coecke, O. I. Aruoma, L. Benzi, and L. Migliore, Modulation of hydrogen peroxide induced DNA damage, MAPKs activation and cell death in PC12 by ergothioneine, Clin Nutr, 25(1), 135 (2006).   DOI
13 E. Turner, R. Klevit, P. B. Hopkins, and B. M. Shapiro, Ovothiol: a novel thiohistidine compound from sea-urchin eggs that confers NAD(P)H-O2 oxidoreductase activity on ovoperoxidase, J. Biol. Chem., 261(28), 3056 (1986).
14 F. Franzoni, R. Colognato, F. Galetta, I. Laurenza, M. Barsotti, R. Di Stefano, R. Bocchetti, F. Regoli, A. Carpi, A. Balbarini, L. Migliore, and G. Santoro, An in vitro study on free radical scavenging capacity of ergothioneine; comparison with reduced glutathione, uric acid and trolox, Biomed. Pharmacother., 60(8), 453 (2006).   DOI
15 S. Sekiguchi, T. Taira, K. Nomoto, W. Takabe, L. Parengkuan, A. N. M. Mamun Or Rashid, M. Yagi, and Y. Yonei, Development of a prototype anti-glycation assay kit for assessment of bone and cartilage collagen modification, Glycative Stress Res., 3(2), 74 (2016).
16 S. Y. Seo, E. Y. Kim, H. Kim, and B. J. Gwang, Neuroprotective effect of high glucose againts NMDA, free radical and oxygen-glucose deprivation through enhanced mitochondrial potentials, J. Neurosci., 19(20), 8849 (1999).   DOI
17 I. Cheah and B. Halliwell, Ergothioneine; antioxidant potential, physiological function and role in disease, Biochim. Biophys. Acta., 1822(5), 784 (2012).   DOI
18 D. P. Jones, Radical-free biology of oxidative stress, Am. J. Physiol. Cell Physiol., 295(4), C849 (2008).   DOI
19 H. Masaki, Y. Okano, and H. Sakurai, Generation of active oxygen species from advanced glycation end-products (AGE) under ultraviolet light A (UVA) irradiation, Biochem. Biophys. Res. Commun., 235(2), 306 (1997).   DOI
20 N. C. Avery and A. J. Bailey, The effects of the Maillard reaction on the physical properties and cell interactions of collagen, Pathol. Biol., 54(7), 387 (2006).   DOI
21 R. Singh, A. Barden, T. Mori, and L. Beilin, Advanced glycation end-products: a review, Diabetologia, 44(2), 129 (2001).   DOI
22 Z. Alikhani, M. Alikhani, C. M. Boyd, K. Nagao, P. C. Trackman, and D. T. Graves, Advanced glycation end products enhance expression of pro-apoptotic genes and stimulate fibroblast apoptosis through cytoplasmic and mitochondrial pathways, J. Biol. Chem., 280(13), 12087 (2005).   DOI
23 G. T. Wondrak, M. J. Roberts, M. K. Jacobson, and E. L. Jacobson, Photosensitized growth inhibition of cultured human skin cells: mechanism and suppression of oxidative stress from solar irradiation of glycated proteins, J. Invest. Dermatol., 119(2), 489 (2002).   DOI
24 O. I. Aruoma, J. P. E. Spencer, and N. Mahmood, Protection against oxidative damage and cell death by the natural antioxidant ergothioneine, Food Chem. Toxicol., 37(11), 1043 (1999).   DOI
25 H. Zhang, J. Joseph, C. Felix, and B. Kalyanaraman, Bicarbonate enhances the hydroxylation, nitration, and peroxidation reactions catalyzed by copper, zinc superoxide dismutase : intermediacy of carbomate anion radical, J. Biol. Chem., 275(19), 14038 (2000).   DOI
26 V. Ravelojaona, A. M. Robert, and L. Robert, Expression of senescence-associated beta-galactosidase (SA-beta-Gal) by human skin fibroblasts, effect of advanced glycation end-products and fucose or rhamnose-rich polysaccharides, Arch Gerontol Geriatr, 48(2), 151 (2009).   DOI
27 P. J. Thornalley, Protein and nucleotide damage by glyoxal andmethylglyoxal in physiological systems-Role in ageing and disease, Drug Metabol Drug Interact, 23(1-2), 125 (2008).   DOI
28 G. P. Dimri, X. Lee, and G. Basile, A biomarker that identifies senescent human cells in culture and in aging skin in vivo, Proc. Natl. Acad. Sci. U. S. A., 92(20), 9363 (1995).   DOI