Browse > Article
http://dx.doi.org/10.5352/JLS.2008.18.3.344

Comparison of Cellular Senescence Phenotype in Human Fibroblasts from New-born and Aged Donors.  

Yi, Hye-Won (Department of Life Science, University of Seoul)
Hwang, Eun-Seong (Department of Life Science, University of Seoul)
Publication Information
Journal of Life Science / v.18, no.3, 2008 , pp. 344-349 More about this Journal
Abstract
Normal somatic cells proliferate for a limited number of doublings in culture and then enter an irreversible growth-arrest state called replicative senescence. Replicative senescence has been believed a reason for the limited cellular turnover and deterioration of tissue function in aged animals. However, there is no experimental evidence supporting this assumption. Furthermore, cells from aged person have been poorly characterized with an exception of the cases of T cells. In this study, we examined cell biological changes occurring in replicative senescence of fibroblast strains originated from a new-born (NHF-NB) and a 87 year old man (NHF-87). NHF-87 (and the cells from a 75-year old) proliferated to smaller population doublings and with longer doubling times than NHF-NB did. At early passages, NHF-87 exhibited a low senescence-associated ${\beta}-Gal$ (SA ${\beta}-Gal$) activity and lipofuscin level, typical markers for cellular senescence. Furthermore, they maintained low levels of lysosome and reactive oxygen species (ROS). All of these levels increased dramatically in the late passage NHF-87 quite similarly as those in the late passaged NHF-NB did. These results indicate that most cells originated from the aged maintain a phenotype of the cells originated from new-born donors and undergo replicative senescence with the same kinetics as that of the cells from new-born. It is also indicated that not SA ${\beta}-gal$ activity but cell proliferation rate may be qualified as a biomarker for cells aged in vivo.
Keywords
Senescence-associated ${\beta}-galactosidase$ activity (SA ${\beta}-Gal$ activity); replicative senescence; aging; reactive oxygen species; lysosome;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Toussaint, O., E. E. Medrano and T. von Zglinicki. 2000. Cellular and molecular mechanisms of stress-induced premature senescence of human diploid fibroblasts and melanocytes. Exp. Gerontol. 35, 927-945.   DOI   ScienceOn
2 Untergasser, G., R. Gander, H. Rumpold, E. Heinrich, E. Plas and P. Berger. 2003. TGF-$\beta$ cytokines increase senescence- associated $\beta$-galactosidase activity in human prostate basal cells by supporting differentiation processes, but not cellular senescence. Exp. Gerontol. 38, 1179-1188.   DOI   ScienceOn
3 Von Zglinicki, T. 2002. Oxidative stress shortens telomeres. Trends Biochem. Sci. 27, 339-344.   DOI   ScienceOn
4 Terman, A. and U. T. Brunk. 2004. Lipofuscin. Int. J. Biochem. Cell Biol. 36, 1400-1404.   DOI   ScienceOn
5 Tesco, G., M. Vergelli, E. Grassilli, P. Salomoni, E. Bellesia, E. Sikora, E. Radziszewska, D. Barbieri, S. Latorraca, U. Fagiolo, S. Santacaterina, L. Amaducci, R. Tiozzo, C. Franceschi and S. Sorbi. 1998. Growth properties and growth factor responsiveness in skin fibroblasts from centenarians. Biochem. Biophys. Res. Commun. 244, 912-916.   DOI   ScienceOn
6 Parkes, T. L., A. J. Elia, D. Dickinson, A. J. Hilliker, J. P. Phillips and G. L. Boulianne. 1998. Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons. Nat. Genet. 19, 171-174.   DOI   ScienceOn
7 Reaper, P. M., F. di Fagagna and S. P. Jackson. 2004. Activation of the DNA damage response by telomere attrition: a passage to cellular senescence. Cell Cycle 3, 543-546.
8 Loschen, G. and A. Azzi. 1975. On the formation of hydrogen peroxide and oxygen radicals in heart mitochondria. Recent Adv. Stud. Cardiac. Struct. Metab. 7, 3-12.
9 Maier, A. B., S. le Cessie, C. de Koning-Treurniet, J. Blom, R. G. Westendorp and D. van Heemst. 2007. Persistence of high-replicative capacity in cultured fibroblasts from nonagenarians. Aging Cell 6, 27-33.   DOI   ScienceOn
10 Yegorov, Y. E., S. S. Akimov, R. Hass, A. V. Zelenin and I. A. Prudovsky. 1998. Endogenous $\beta$-galactosidase activity in continuously nonproliferating cells. Exp. Cell Res. 243, 207-211.   DOI   ScienceOn
11 Genova, M. L., M. M. Pich, A. Bernacchia, C. Bianchi, A. Biondi, C. Bovina, A. I. Falasca, G. Formiggini, G. P. Castelli and G. Lenaz. 2004. The mitochondrial production of reactive oxygen species in relation to aging and pathology. Ann. N. Y. Acad. Sci. 1011, 86-100.   DOI   ScienceOn
12 Cristofalo, V. J., R. G. Allen, R. J. Pignolo, B. G. Martin and J. C. Beck JC. 1998. Relationship between donor age and the replicative lifespan of human cells in culture: a reevaluation. Proc. Natl. Acad. Sci. USA 95, 10614-10619.   DOI
13 d'Adda di Fagagna, F., P. M. Reaper, L. Clay-Farrace, H. Fiegler, P. Carr, T. Von Zglinicki, G. Saretzki, N. P. Carter and S. P. Jackson. 2003. A DNA damage checkpoint response in telomere-initiated senescence. Nature 426, 194-198.   DOI   ScienceOn
14 Dimri, G.P., X. Lee, G. Basile, M. Acosta, G. Scott, C. Roskelley, E. E. Medrano, M. Linskens, I. Rubelj and O. Pereira-Smith. 1995. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. USA 92, 9363-9367.   DOI   ScienceOn
15 Robbins, E., E. M. Levine and H. Eagle. 1970. Morphologic changes accompanying senescence of cultured human diploid cells. J. Exp. Med. 131, 1211-1222.   DOI   ScienceOn
16 Severino, J., R. G. Allen, S. Balin, A. Balin and V. J. Cristofalo. 2000. Is $\beta$-galactosidase staining a marker of senescence in vitro and in vivo? Exp. Cell Res. 257, 162-171.   DOI   ScienceOn
17 Campisi, J. and F. d'Adda di Fagagna. 2007. Cellular senescence: when bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 8, 729-740.   DOI   ScienceOn
18 Kang, H. T., H. I. Lee and E. S. Hwang. 2006. Nicotinamide extends replicative lifespan of human cells. Aging cell 5, 423-436.   DOI   ScienceOn
19 Schneider, E. L. and Y. Mitsui. 1976. The relationship between in vitro cellular aging and in vivo human age. Proc. Natl. Acad. Sci. USA 73, 3584-3588.   DOI   ScienceOn
20 Serra, V. and T. von Zglinicki. 2002. Human fibroblasts in vitro senesce with a donor-specific telomere length. FEBS Lett. 516, 71-74.   DOI   ScienceOn
21 Orr, W. C. and R. S. Soha. 1994. Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263, 1128-1130.   DOI
22 Blander, G., R. M. de Oliveira, C. M. Conboy, M. Haigis and L. Guarente. 2003. Superoxide dismutase 1 knockdown induces senescence in human fibroblast. J. Biol. Chem. 278, 38966-38969.   DOI   ScienceOn
23 Bodnar, A. G., M. Ouellette, M. Frolkis, S. E. Holt, C. P. Chiu, G. B. Morin, C. B. Harley, J. W. Shay, S. Lichtsteiner and W. E. Wright. 1998. Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349-352.   DOI   ScienceOn
24 Brunk, U. T., J. L. E. Ericsson, J. Ponten and B. Westermark. 1973. Residual bodies and 'aging' in cultured human glia cells. Exp. Cell Res. 79, 1-14.   DOI   ScienceOn
25 Campisi, J. 2001. Cellular senescence as a tumor-suppressor mechanism. Trends. Cell Biol. 11, S27-S31.
26 Dimri, G. P., A. Testori, M. Acosta and J. Campisi. 1996. Replicative senescence,aging and growth-regulatory transcription factors. Biol. Signals 5, 154-162.   DOI
27 Lee, B. Y., J. A. Han, J. S. Im, A. Morrone , K. Johung, E. C. Goodwin, W. J. Kleijer, D. DiMaio and E. S. Hwang. 2006. Senescence-associated $\beta$-galactosidaseis lysosomal $\beta$- galactosidase. Aging Cell 5, 187-195.   DOI   ScienceOn
28 Hayflick, L. and P. S. Moorhead. 1961. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585-621   DOI   ScienceOn
29 Hayflick, L. 1965. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 37, 614-636.   DOI   ScienceOn
30 Edward, L. S., and M. Youji. 1976, The Relationship between in Vitro Cellular Aging and in Vivo Human Age. Proc. Natl. Acad. Sci. USA 10, 3584-3588.
31 Allsopp, R. C., H. Vaziri, C. Patterson, S. Goldstein, E. V. Younglai, A. B. Futcher, C. W. Greider and C. B. Harley. 1992. Telomere length predicts replicative capacity of human fibroblasts. Proc. Natl. Acad. Sci. USA 89, 10114-10118.   DOI   ScienceOn
32 Ames, B. N., M. K. Shigenaga and T. M. Hagen. 1993. Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA 90, 7915-7922.   DOI
33 Beckman, K. B. and B. N. Ames. 1979. The free radical theory of aging matures. Physiol. Rev. 59, 527-605.   DOI