• Title/Summary/Keyword: Normal Equation

Search Result 878, Processing Time 0.021 seconds

NORMAL INTERPOLATION PROBLEMS IN ALGL

  • Jo, Young-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.4
    • /
    • pp.691-700
    • /
    • 2004
  • Let X and Y be operators acting on a Hilbert space and let (equation omitted) be a subspace lattice of orthogonal projections on the space containing 0 and I. We investigate normal interpolation problems in Alg(equation omitted): Given operators X and Y acting on a Hilbert space, when does there exist a normal operator A in Alg(equation omitted) such that AX = Y?

THE EXTREMAL RANKS AND INERTIAS OF THE LEAST SQUARES SOLUTIONS TO MATRIX EQUATION AX = B SUBJECT TO HERMITIAN CONSTRAINT

  • Dai, Lifang;Liang, Maolin
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.3_4
    • /
    • pp.545-558
    • /
    • 2013
  • In this paper, the formulas for calculating the extremal ranks and inertias of the Hermitian least squares solutions to matrix equation AX = B are established. In particular, the necessary and sufficient conditions for the existences of the positive and nonnegative definite solutions to this matrix equation are given. Meanwhile, the least squares problem of the above matrix equation with Hermitian R-symmetric and R-skew symmetric constraints are also investigated.

OSCILLATORY BEHAVIOR OF THE SECOND-ORDER NONLINEAR NEUTRAL DIFFERENCE EQUATIONS

  • Zhang, Zhenguo;Dong, Wenlei;Ping, Bi
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.1
    • /
    • pp.111-128
    • /
    • 2001
  • In this paper, we consider the oscillation of the second-order neutral difference equation Δ²(x/sub n/ - px/sub n-r/) + q/sub n/f(x/sub n/ - σ/sub n/) = 0 as well as the oscillatory behavior of the corresponding ordinary difference equation Δ²z/sub n/ + q/sub n/f(R(n,λ)z/sub n/) = 0

THE ENUMERATION OF ROOTED CUBIC C-NETS

  • CAI JUNLIANG;HAO RONGXIA;LID YANPEI
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.329-337
    • /
    • 2005
  • This paper is to establish a functional equation satisfied by the generating function for counting rooted cubic c-nets and then to determine the parametric expressions of the equation directly. Meanwhile, the explicit formulae for counting rooted cubic c-nets are derived immediately by employing Lagrangian inversion with one or two parameters. Both of them are summation-free and in which one is just an answer to the open problem (8.6.5) in [1].

Development of the Direct Boundary Element Method for Thin Bodies with General bBundary Conditions (일반 경계 조건을 가진 얇은 물체에 대한 직접 경계 요소법의 개발)

  • 이강덕;이덕주
    • Journal of KSNVE
    • /
    • v.7 no.6
    • /
    • pp.975-984
    • /
    • 1997
  • A direct boundary element method (DBEM) is developed for thin bodies whose surfaces are rigid or compliant. The Helmholtz integral equation and its normal derivative integral equation are adoped simultaneously to calculate the pressure on both sides of the thin body, instead of the jump values across it, to account for the different surface conditions of each side. Unlike the usual assumption, the normal velocity is assumed to be discontinuous across the thin body. In this approach, only the neutral surface of the thin body has to be discretized. The method is validated by comparison with analytic and/or numerical results for acoustic scattering and radiation from several surface conditions of the thin body; the surfaces are rigid when stationary or vibrating, and part of the interior surface is lined with a sound-absoring material.

  • PDF

A proposal of spirometry reference equations for Korean workers

  • Yonglim Won;Hwa-Yeon Lee
    • Annals of Occupational and Environmental Medicine
    • /
    • v.34
    • /
    • pp.14.1-14.14
    • /
    • 2022
  • Background: Although spirometry results can be interpreted differently depending on the reference equation used, there are no established criteria for selecting reference equations as part of the special health examinations for Korean workers. Thus, it is essential to examine the current use of reference equations in Korea, quantify their impact on result interpretation, and propose reference equations suitable for Korean workers, while also considering the environmental conditions of special health examination facilities. Methods: The 213,640 results from the special health examination database were analyzed to identify changes in the ratio of measured values to reference values of lung capacity in Korean workers with changes in age or height, and changes in the agreement of interpretations with the reference equation used. Data from 238 organizations that participated in the 2018-2019 quality control assessment by the Korea Occupational Safety and Health Agency were used to identify the spirometer model and reference equations used in each special health examination facility. Results: Korean special health examination facilities used six reference equations, and the rate of normal or abnormal ventilatory diagnoses varied with the reference equation used. The prediction curve of the Global Lung Function Initiative 2012-Northeast Asian (GLI2012) equation most resembled that of the normal group, but the spirometry model most commonly used by examination facilities was not compliant with the GLI2012 equation. With a scaling factor of 0.95 applied to the Dr. Choi equation, the agreement with the GLI2012 equation was > 0.81 for men and women. Conclusions: We propose the GLI2012 equation as reference equation for spirometry in Korean workers. The GLI2012 equation exhibited the most suitable prediction curve against the normal lung function group. For devices that cannot use the GLI2012 equation, we recommend applying a scaling factor of 0.95 to the Dr. Choi equation.

ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR DIFFERENCE EQUATION $x_{n+1}\;=\;{\alpha}\;+\;\beta{x_{n-1}}^{p}/{x_n}^p$

  • Liu, Zhaoshuang;Zhang, Zhenguo
    • The Pure and Applied Mathematics
    • /
    • v.11 no.1
    • /
    • pp.15-22
    • /
    • 2004
  • In this paper, we investigate asymptotic stability, oscillation, asymptotic behavior and existence of the period-2 solutions for difference equation $x_{n+1}\;=\;{\alpha}\;+\;\beta{x_{n-1}}^{p}/{x_n}^p$ where ${\alpha}\;{\geq}\;0,\;{\beta}\;>\;0.\;$\mid$p$\mid$\;{\geq}\;1$, and the initial conditions $x_{-1}\;and\;x_0$ are arbitrary positive real numbers.

  • PDF

BLOW-UP RATE FOR THE SEMI-LINEAR WAVE EQUATION IN BOUNDED DOMAIN

  • Liang, Chuangchuang;Wang, Pengchao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.1
    • /
    • pp.173-182
    • /
    • 2015
  • In this paper, the blow-up rate of $L^2$-norm for the semi-linear wave equation with a power nonlinearity is obtained in the bounded domain for any p > 1. We also get the blow-up rate of the derivative under the condition 1 < p < $1+\frac{4}{N-1}$ for $N{\geq}2$ or 1 < p < 5 for N = 1.

SUBGRADIENT ESTIMATES FOR A NONLINEAR SUBELLIPTIC EQUATION ON COMPLETE PSEUDOHERMITIAN MANIFOLD

  • Han, Yingbo;Jiang, Kaige;Liang, Mingheng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.175-186
    • /
    • 2018
  • Let (M, J, ${\theta}$) be a complete pseudohermintian (2n+1)-manifold. In this paper, we derive the subgradient estimate for positive solutions to a nonlinear subelliptic equation ${\Delta}_bu+au{\log}u+bu=0$ on M, where $a{\leq}0$, b are two real constants.