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BLOW-UP RATE FOR THE SEMI-LINEAR WAVE

EQUATION IN BOUNDED DOMAIN

Chuangchuang Liang and Pengchao Wang

Abstract. In this paper, the blow-up rate of L2-norm for the semi-
linear wave equation with a power nonlinearity is obtained in the bounded
domain for any p > 1. We also get the blow-up rate of the derivative under
the condition 1 < p < 1 + 4

N−1
for N ≥ 2 or 1 < p < 5 for N = 1.

1. Introduction

In this paper, we study the blow-up rate for the following semi-linear wave
equation

(1.1)











utt −∆u = |u|p−1u x ∈ Ω and t ≥ 0,

u(t, x) = 0 x ∈ ∂Ω,

u(0) = u0, ut(0) = u1,

where Ω ⊂ R
N is a bounded domain. We assume that the initial data u0 ∈

Lp+1(Ω) and u1 are sufficiently smooth and bounded in Ω such that the solu-
tion u(t, x) of equation (1.1) belongs to C([0, T ), H2(Ω))∩C1([0, T ), H1

0 (Ω))∩
C2([0, T ), L2(Ω)). Here 0 < T < ∞ is the lifespan of equation (1.1).

In the whole space RN , Antonini and Merle [2] and Merle and Zaag [8, 9, 10]
considered the blow-up rate for the equation (1.1) in the local uniform Sobolev
space, that is H1

loc,u(R
N )× L2

loc,u(R
N ) which is defined as

L2
loc,u(R

N ) :=
{

u
∣

∣

∣
u ∈ L2

loc(R
N ) and

‖u‖L2
loc,u

:= sup
a∈RN

(
∫

|x−a|<1

|v(x)|2dx

)1/2

< ∞

}

,

H1
loc,u(R

N ) :=
{

u
∣

∣

∣
u and ∂iu ∈ L2

loc,u(R
N ), 1 ≤ i ≤ N

}

.
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They use the following self-similar transformation of variables:

wa(s, y) = (T − t)
2

p−1u(t, x), y =
x− a

T − t
, s = − ln(T − t),

and (1.1) is transformed into

(1.2)

∂2
swa −

1

ρ
div(ρ∇wa − ρ(y · ∇wa)y) +

2(p+ 1)

(p− 1)2
wa − |wa|

p−1wa

= −
p+ 3

p− 1
∂swa − 2y · ∇∂swa

in the unit ball B and the exponent p is restricted such that 1 < p ≤ 1+ 4
N−1 .

Here ρ := (1−|y|2)α and α = 2
p−1 −

N−1
2 . Via the blow-up analysis and energy

estimate, they obtained the bound of wa in H1(B)×L2(B), and the inverse of
self-similar transformation gives
(1.3)

(T − t)
2

p−1 ‖u(t)‖L2
loc,u

+ (T − t)
2

p−1+1
(

‖ut(t)‖L2
loc,u

+ ‖∇u(t)‖L2
loc,u

)

≤ K,

where K is a positive constant depending only on N , p and the initial data. By
the local existence result, this blow-up rate in (1.3) is optimal, which means
there exists a positive constant ε0 such that

ε0 ≤ (T − t)
2

p−1 ‖u(t)‖L2
loc,u

+ (T − t)
2

p−1+1
(

‖ut(t)‖L2
loc,u

+ ‖∇u(t)‖L2
loc,u

)

.

In [3], Bizón, Chmaj and Tabor obtained a numerical confirmation of this
result in the wider range 1 < p < 1 + 4

N−2 . Recently, Hamza and Zaag [5]

considered the case where 1 < p < 1 + 4
N−2 in the higher dimensions. Via the

same transformation and the perturbation method, they got the blow-up rate
near the blow-up graph.

Many mathematicians also studied the blow-up profile near the blow-up
graph, and we referred the interested reader to Alinhac [1], Caffarelli and Fried-
man [4], Kichenassamy and Litman [6, 7] and the references therein.

In this paper, we consider the blow-up rate for the equation (1.1) in the
bounded domain. Here the self-similar transformation loses effectiveness. So
we introduce another transformation of variables:

(1.4) s = − ln(T − t), w(s, x) = (T − t)βu(t, x),

where T is the lifespan of (1.1) and β := 2
p−1 . Then the function w satisfies

the following equation

(1.5) wss − e−2s△w + (2β + 1)ws + β(β + 1)w = |w|p−1w

with the homogeneous boundary condition. Now we state our results about
the boundedness of equation (1.5).



BLOW-UP RATE FOR NLW IN BD 175

Theorem 1.1 (Uniform bounds on solutions of (1.5)). Assume p > 1. If

w is the solution of (1.5) and blows up at time T < ∞, then for any s ∈
[− lnT + 1,∞),

∫ s+1

s

∫

Ω

(

e−2τ |∇w(τ, x)|2 + |∂sw(τ, x)|
2

)

dxdτ ≤ K,(1.6)

‖w(s)‖L2(Ω) ≤ K,(1.7)

where w is defined in (1.4), and K relies on N , p, Ω, the blow-up time T and

the initial data.

Moreover, if 1 < p < 1 + 4
N−1 for N ≥ 2 or 1 < p < 5 for N = 1, we obtain

(1.8)

∫

Ω

(

e−2s|∇w(s, x)|2 + |∂sw(s, x)|
2

)

dx ≤ K(1 + e2γs),

where γ = N(p−1)
2[N+3−(N−1)p] for N ≥ 3 or γ = p−1

5−p for N = 1, 2.

Using the transformation (1.4), this result is rewritten in the original set of
variables u(t, x) as follows.

Theorem 1.2. Assume p > 1. If u is a solution of (1.1) which blows up at

time T < ∞, then for any t ∈ [T (1− e−1), T ) we have

∫ T

t

∫

Ω

[

(T − τ)2β+1|∇u(τ, x)|2 + (T − τ)2β−1|(1.9)

−βu(τ, x) + (T − τ)∂tu(τ, x)|
2
]

dxdτ ≤ K,

(T − t)β‖u(t)‖L2(Ω) ≤ K(1.10)

for some constant K which relies on N , p, Ω, the blow-up time T and the initial

data.

Moreover, we also get

(1.11) (T − t)β+1+γ [‖∇u(t)‖L2 + ‖∂tu(t)‖L2 ] ≤ K,

provided that 1 < p < 1 + 4
N−1 for N ≥ 2 or 1 < p < 5 for N = 1 and

t ∈ [T (1− e−1), T )∩ [T − 1, T ). Here γ = N(p−1)
2[N+3−(N−1)p] for N ≥ 3 or γ = p−1

5−p

for N = 1, 2.

Remark 1.1. In the whole space RN , using this transformation and the method
in [8], we can also get (1.9) and (1.10) but (1.11) is not satisfied. Because
in the proof of (1.11) the Lp1-norm dosen’t control the Lp2-norm in R

N for
p1 > p2 ≥ 1.

Remark 1.2. For the critical type p = 1 + 4/(N − 1), Claim 3.2 in Section 3
holds for θ = 1, and we could not get the bound of derivative directly from the
definition of energy E(s) via Young inequality.
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Remark 1.3. We may choose other transformations to obtain the same result
as Theorem 1.2. For an example, we select

s =
1

T − t
, w(s, x) = (T − t)βu(t, x),

and the equation (1.1) is changed to

s2wss − s−2△w + 2(β + 1)sws + β(β + 1)w = |w|p−1w.

We define the energy function as

(1.12)

E[w](s) :=

∫

Ω

[1

2
s2|ws(s, x)|

2 +
1

2
s−2|∇w(s, x)|2

+
1

2
β(β + 1)|w(s, x)|2 −

1

p+ 1
|w(s, x)|p+1

]

dx,

and like the proof of Theorem 1.1 we can get the same blow-up rate of (1.1).

This work is strongly inspired by the works of Merle and Zaag [8, 9, 10].
The outline of the paper is organized as follows. In Section 2, we make some
blow-up analysis for equation (1.5). The proof of Theorem 1.1 is in Section 3.

2. Blow-up analysis for equation (1.5)

We define an energy function as follows.

(2.1)

E[w](s) :=

∫

Ω

[1

2
|ws(s, x)|

2 +
1

2
e−2s|∇w(s, x)|2

+
1

2
β(β + 1)|w(s, x)|2 −

1

p+ 1
|w(s, x)|p+1

]

dx.

Denote that E(s) = E[w](s) for simplicity. Immediately, we have the following
lemma.

Lemma 2.1. The energy function s 7→ E(s) is a decreasing function for s ≥
− lnT . Moreover, we have that for any s1, s2 ∈ [− lnT,∞),

(2.2) E(s2)−E(s1) = −

∫ s2

s1

∫

Ω

(

e−2τ |∇w(τ, x)|2+(2β+1)|∂sw(τ, x)|
2
)

dxdτ.

Proof. Multiplying the equation (1.5) by ws and integrating over [s1, s2] × Ω,
we immediately get the equality (2.2), which completes the proof of Lemma
2.1. �

Using the method of Antonini and Merle [2], we get the following blow-up
result for equation (1.5).

Proposition 2.1. Assume that p > 1 and w is the solution of equation (1.5).
Then w blows up in finite time provided that there exits s0 ∈ R such that

E(s0) < 0.
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Proof. Arguing by contradiction, we assume that there exists a global solution
w of (1.5) in Ω. Like the proof in [2], we consider the following transformation.

w̃δ(s, x) =
1

(1 + δes)β
w(− ln(δ + e−s), x), (s, x) ∈ [s0 + 1,∞)× Ω,

where δ > 0 is decided later. Computing clearly, we know that:

(i) w̃δ is also satisfied the equation (1.5);
(ii) By continuity of the function δ → E[w̃δ](s0 + 1), we choose δ small

enough such that E[w̃δ](s0 + 1) < 0.

We choose one fixed δ > 0, such that (i) and (ii) are satisfied. And from the
definition of energy E[w̃δ](s) we get

E[w̃δ](s) ≥ −
1

p+ 1

∫

Ω

|w̃δ(s, x)|
p+1dx

≥ −
1

(p+ 1)(1 + δes)β(p+1)

∫

Ω

|w(− ln(δ + e−s), x)|p+1dx.

(2.3)

Via a continuous argument and the energy equality, we can get that u ∈
C([0, T − δ], Lp+1(Ω)), so w(− ln(δ + e−s), ·) remains bounded in Lp+1(Ω).
Then (2.3) yields

E[w̃δ](s) ≥ −
C

(p+ 1)(1 + δes)2β+2
,

which implies

lim inf
s→∞

E[w̃δ](s) ≥ 0.

But this contradicts the fact that E[w̃δ](s0 + 1) < 0 and E[w̃δ](s) descends by
Lemma 2.1. This concludes the proof of Proposition 2.1. �

Remark 2.1. In [2], Theorem 2 needs the condition 1 < p < 1 + 4
N−2 , because

they obtained the inequality

E[w̃δ](s) ≥ −
1

(p+ 1)(1 + δes)2β+2−N

∫

B

|w(− ln(δ + e−s), x)|p+1dx

which requires 2β + 2−N > 0.

From this proposition and Lemma 2.1, we have that:

Corollary 2.1. For all s ≥ − lnT , s2 ≥ s1 ≥ − lnT , the following inequalities

hold:

0 ≤ E(s) ≤ E(− logT ) ≤ C0,
∫ s2

s1

∫

Ω

(

e−2τ |∇w(τ, y)|2 + |∂sw(τ, y)|
2
)

dydτ ≤ C0,

where the constant C0 > 0 depends only on the blow-up time T and the norm

of initial data.

Remark 2.2. From this corollary, we get the inequality (1.6) in Theorem 1.1.
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3. Uniform bounds on w

In this section, we will control the L2- and H1-norm of w.

Proof of Theorem 1.1. For any fixed s ≥ − lnT + 1, we choose s1 ∈ [s − 1, s]
and s2 ∈ [s+ 1, s+ 2], which will be determined later. Multiplying (1.5) by w
and integrating over [s1, s2]× Ω, it yields

∫ s2

s1

∫

Ω

|w|p+1dxdτ(3.1)

=

[
∫

Ω

wws

]s2

s1

+

∫ s2

s1

∫

Ω

[

−|ws|
2 + e−2τ |∇w|2 + (2β + 1)wsw + β(β + 1)|w|2

]

dxdτ.

By the definition of E(s), we get
∫

Ω

[

e−2s|∇w|2 + β(β + 1)|w|2
]

dx = 2E(s)−

∫

Ω

[

|ws|
2 −

2

p+ 1
|w|p+1

]

dx,

which, combining with (3.1), gives that

p− 1

p+ 1

∫ s2

s1

∫

Ω

|w|p+1dxdτ(3.2)

=

[
∫

Ω

wws

]s2

s1

+ 2

∫ s2

s1

E(τ)dτ

− 2

∫ s2

s1

∫

Ω

|ws|
2dxdτ + (2β + 1)

∫ s2

s1

∫

Ω

wswdxdτ.

Via Hölder inequality and Cauchy-Schwarz inequality, the last two terms in
(3.2) yield

− 2

∫ s2

s1

∫

Ω

|ws|
2dxdτ + (2β + 1)

∫ s2

s1

∫

Ω

wswdxdτ(3.3)

≤ − 2

∫ s2

s1

∫

Ω

|ws|
2dxdτ + (2β + 1)

(
∫ s2

s1

∫

Ω

|ws(τ, x)|
2dxdτ

)
1
2
(
∫ s2

s1

∫

Ω

|w(τ, x)|2dxdτ

)
1
2

≤ C

∫ s2

s1

∫

Ω

|w(τ, x)|2dxdτ ≤ C

(
∫ s2

s1

∫

Ω

|w|p+1dxdτ

)
2

p+1

≤
p− 1

2(p+ 1)

∫ s2

s1

∫

Ω

|w|p+1dxdτ + C,

where the positive constant C relies on Ω, N and p.
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Combining (3.2) with (3.3) and using Hölder inequality and Cauchy-Schwarz
inequality, we get that

(3.4)

∫ s2

s1

∫

Ω

|w|p+1dxdτ

≤ Cε
[

‖w(s1)‖
2
L2 + ‖w(s2)‖

2
L2

]

+
C

ε

[

‖ws(s1)‖
2
L2 + ‖ws(s2)‖

2
L2

]

+ C,

where ε > 0 will be decided later.
To estimate the first term in right hand of (3.4), we give the following claim.

Claim 3.1. There exists a positive constant C, depending only on Ω, N , p
and the initial data, such that

(3.5) sup
s1≤s≤s2

∫

Ω

|w(s, x)|2dx ≤ C + C

∫ s2

s1

∫

Ω

|w|p+1dxdτ.

Proof of Claim 3.1. By the mean value theorem, we know there exists s0 ∈
[s1, s2] such that

(3.6)

∫

Ω

|w(s0, x)|
2dx =

1

s2 − s1

∫ s2

s1

∫

Ω

|w|2dxdτ ≤

∫ s2

s1

∫

Ω

|w|p+1dxdτ + C.

Here we use Hölder inequality and Cauchy-Schwarz inequality and note 1 ≤
s2 − s1 ≤ 3. For any s ∈ [s1, s2],

∫

Ω

|w(s, x)|2dx =

∫

Ω

|w(s0, x)|
2dx+

∫ s

s0

d

ds

∫

Ω

|w(τ, x)|2dxdτ

≤

∫

Ω

|w(s0, x)|
2dx+

∫ s2

s1

∫

Ω

|w(τ, x)|2dxdτ

+

∫ s2

s1

∫

Ω

|ws(τ, x)|
2dxdτ

≤ C

∫ s2

s1

∫

Ω

|w|p+1dxdτ + C,

where we use (3.6) and Corollary 2.1 in the last inequality. This completes the
proof of Claim 3.1. �

By mean value theorem, we choose s1 and s2 such that
∫

Ω

|ws(s1, x)|
2dx =

∫ s

s−1

∫

Ω

|ws(τ, x)|
2dxdτ and

∫

Ω

|ws(s2, x)|
2dx =

∫ s+2

s+1

∫

Ω

|ws(τ, x)|
2dxdτ,

which, together with (3.4), Claim 3.1 and Corollary 2.1 and choosing ε = 1
4C2 ,

yields that

(3.7)

∫ s2

s1

∫

Ω

|w|p+1dxdτ ≤ C.
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Immediately, via Claim 3.1, we obtain that for any s ∈ [− lnT + 1,∞)

(3.8)

∫

Ω

|w(s, x)|2dx ≤ C,

which gets the inequality (1.7) in Theorem 1.1.
To complete the proof of Theorem 1.1, we need to estimate

∫

Ω |w(s, x)|p+1dx

under the condition 1 < p < 1 + 4
N−1 for N ≥ 2 or 1 < p < 5 for N = 1.

Claim 3.2. There exists a positive constant θ ∈ (0, 1) such that
∫

Ω

|w(s, x)|p+1dx ≤ C

(
∫

Ω

|∇w(s, x)|2dx

)θ

provided 1 < p < 1 + 4
N−1 for N ≥ 2 or 1 < p < 5 for N = 1.

Proof of Claim 3.2. From (3.7), we know that there exists s̃ ∈ [s1, s2] such that

(3.9)

∫

Ω

|w(s̃, x)|p+1dx =
1

s2 − s1

∫ s2

s1

∫

Ω

|w(τ, x)|p+1dxdτ ≤ C.

Via Hölder inequality, (3.9) implies

(3.10)

∫

Ω

|w(s̃, x)|rdx ≤ C,

where r := p+3
2 . For any s ∈ [s1, s2], we have that

∫

Ω

|w(s, x)|rdx =

∫

Ω

|w(s̃, x)|rdx+

∫ s

s̃

d

ds

∫

Ω

|w(τ, x)|rdxdτ

≤

∫

Ω

|w(s̃, x)|rdx+ C

∫ s2

s1

∫

Ω

|w|p+1dxdτ

+ C

∫ s2

s1

∫

Ω

|ws|
2dxdτ,

which, together with (3.7), (3.10) and Corollary 2.1, yields

(3.11)

∫

Ω

|w(s, x)|rdx ≤ C.

Using Sobolev embedding inequalities, (3.11) gives

∫

Ω

|w(s, x)|p+1dx ≤ C

(
∫

Ω

|w(s, x)|rdx

)

2(p+1)(1−α)
p+3

(
∫

Ω

|∇w(s, x)|2dx

)

α(p+1)
2

≤ C

(
∫

Ω

|∇w(s, x)|2dx

)θ

,

where θ := α(p+1)
2 and α satisfies 1

p+1 = 2(1−α)
p+3 + α(N−2)

2N for N ≥ 3 or α =
p−1

2(p+1) for N = 1 and 2. Calculating clearly, we know that

θ =
N(p− 1)

N + 6− (N − 2)p
for N ≥ 3 or θ =

p− 1

4
for N = 1 and 2,
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which, together with the assumption of p, gives that 0 < θ < 1. �

Using Young inequality, by Claim 3.2, we get that

∫

Ω

|w(s, x)|p+1dx ≤ C

(
∫

Ω

e−2s|∇w(s, x)|2dx

)θ

e2θs

≤ ε

∫

Ω

e−2s|∇w(s, x)|2dx+ C(ε)(1 − θ)e
2θs
1−θ .

(3.12)

Combining (3.12) with the definition of E(s) and Corollary 2.1, we get

(3.13)

∫

Ω

[|ws(s, x)|
2 + e−2s|∇w(s, x)|2 + |w(s, x)|2]dx ≤ C(1 + e2γs).

Here γ := N(p−1)
2N+6−2(N−1)p for N ≥ 3 while γ := p−1

5−p for N = 1 or 2. So we

complete the proof of Theorem 1.1. �
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