• Title/Summary/Keyword: Normal Accidents

Search Result 202, Processing Time 0.027 seconds

Development of a 3D thermohydraulic-neutronic coupling model for accident analysis in research miniature neutron source reactor (MNSR)

  • Ahmadi, M.;Rabiee, A.;Pirouzmand, A.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1776-1783
    • /
    • 2019
  • To accurately analyze the accidents in nuclear reactors, a thermohydraulic-neutronic coupling calculation is required to solve fluid dynamics and nuclear reactor kinetics equations in fine cells simultaneously and evaluate the local effects of neutronic and thermohydraulic parameters on each other. In the present study, a 3D thermohydraulic-neutronic coupling model is developed, validated and then applied for Isfahan MNSR (Miniature Neutron Source reactor) safety analysis. The proposed model is developed using FLUENT software and user defined functions (UDF) are applied to simulate the neutronic behavior of MNSR. The validation of the proposed model is first evaluated using 1mk reactivity insertion experiment into Isfahan MNSR core. Then, the developed coupling code is applied for a design basis accident (DBA) scenario analysis with the insertion of maximum allowed cold core reactivity of 4 mk. The results show that the proposed model is able to predict the behavior of the reactor core under normal and accident conditions with a good accuracy.

Detecting Anomalous Trajectories of Workers using Density Method

  • Lan, Doi Thi;Yoon, Seokhoon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.109-118
    • /
    • 2022
  • Workers' anomalous trajectories allow us to detect emergency situations in the workplace, such as accidents of workers, security threats, and fire. In this work, we develop a scheme to detect abnormal trajectories of workers using the edit distance on real sequence (EDR) and density method. Our anomaly detection scheme consists of two phases: offline phase and online phase. In the offline phase, we design a method to determine the algorithm parameters: distance threshold and density threshold using accumulated trajectories. In the online phase, an input trajectory is detected as normal or abnormal. To achieve this objective, neighbor density of the input trajectory is calculated using the distance threshold. Then, the input trajectory is marked as an anomaly if its density is less than the density threshold. We also evaluate performance of the proposed scheme based on the MIT Badge dataset in this work. The experimental results show that over 80 % of anomalous trajectories are detected with a precision of about 70 %, and F1-score achieves 74.68 %.

Verification of Algorithm for Arc Detection Using High Pass Filter and FFT (고역통과 필터 및 FFT를 이용하여 아크감지 알고리즘 검증)

  • Min-Ho Yoon;You-Jung Cho;Kyoung-Tak Kim;Sung-Hun Lim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.5
    • /
    • pp.520-524
    • /
    • 2023
  • An algorithm was developed to detect and block serial arc currents using HPF. The AC series arc problem is that the load current is greater than the fault current and no leakage current occurs. As a solution, an arc detection method utilizing differences in high- frequency amplitudes was developed. HPT was applied to the load current and FFT was applied to eliminate low frequencies. An algorithm has been developed to detect arc waveforms when they exceed a certain value compared to the average of normal waveforms. Using one cycle of data, arc detection is faster and arc accidents are prevented.

Effects of Venesection at the Sybsun-points on Blood Pressure and Body Temperature and Pulse Rate in Humans (남녀 대학생에서 십선혈(十宣穴) 사혈(瀉血)이 혈압, 체온 및 맥박수에 미치는 영향)

  • Lee, Dong-Gun;Jeong, Won-Je;Lee, Hyun-Jin;Cho, Hyun-Seok;Kim, Kyung-Ho;Kim, Kap-Sung
    • Journal of Acupuncture Research
    • /
    • v.25 no.4
    • /
    • pp.51-58
    • /
    • 2008
  • Objectives : Sypsun-points are located at the tips of all fingers, 0.1 chon(寸) from the finger nails, totaling 10 points on both hands. These points have been used for emergency care, fainting, epilepsy, cerebrovascular accidents, hypertension, unconsciousness, high fever etc. in oriental medicine. The most common technique is bleeding with a needle at these points. We investigated whether Venesection at the Sybsun-points has effects on blood pressure and body temperature and pulse rate in humans aged from 20 to 30 who had no specific past history and whose vital signs are in normal range. Methods : 67 persons were studied from March to June 2008. They were composed of Sample group(n=36) and Normal group(n=31). Both two groups kept a steady state an hour before venesection. In both group, we checked blood pressure and body temperature and pulse rates 6 times( 30min. before and just before treatment, and just after, 30, 60, 90min after treatment). All study environments were same between sample and normal group. But only, normal group didn't carry out venesection at the Sybsun-points. Results : In a comparison of before and after venesection at the Sybsun-points, any Statistical significance was not evaluated. Though pulse rate in sample group was significantly decreased after venesection(p<0.05), it has no statistical significance because normal group's pulse rate was also significantly decreased and between two groups had no statistical difference. Conclusions : Though further study is needed, our findings suggest that venesection at the Sybsun-points has no significant effect on blood pressure and body temperature, and pulse rate in humans who had no specific past history and whose vital signs are in normal range. Also in that case, we may know that pain and tension result from venesection at the Sybsun-points have no significant effect on blood pressure and body temperature and pulse rate.

  • PDF

Psychosocial Outcome after Head Injury (두부외상후 심리사회적 예후)

  • Park, Ki-Chang;Kim, Hun-Joo
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.2
    • /
    • pp.196-202
    • /
    • 2000
  • Objective : This study was designed to evaluate the relationship between the initial neurosurgical or psychosocial factors and the psychosocial outcome. Patients and Methods : We analyzed 123 head-injured patients who were referred to the department of psychiatry for the evaluation of psychosocial function. We analyzed initial neurosurgical variables such as Glasgow Coma scale(GCS) score, skull fracture, CT finding, and psychosocial outcomes with regards to psychosis, personality change, depression, anxiety and IQ on Intelligence Scale. Results : Patients with mild head injury(GCS score 13-15, N=94, 76.4%) had better recovery rate on Glasgow Outcome Scale(GOS), less personality change than those with moderate or severe head injury. However, depression, anxiety and intelligence were not significantly different between two groups. The skull fracture(N=37, 30.1%) did not influence on the psychosocial outcome with reference to personality change, depression, anxiety and intelligence. The patients with abnormal CT findings(N=64, 52%) had lower recovery rate on GOS, more frequent tendency in psychosis, personality change and severe depression, less frequent in anxiety and mild depression, than patients with normal CT finding. However, levels of intelligence were not different between two groups. The patients with industrial accidents(IA) had lower educational level, milder head injury, more delay for the psychiatric evaluation (longer treatment period) than those with motor vehicular accidents(MVA). The psychosocial outcome with reference to personality change, depression, anxiety, intelligence were not different between two groups. Conclusion : These findings indicate that the more severe initial trauma, the poorer psychosocial outcome. However, it was frequently observed that patients with mild head injury suffered from mild anxiety and depression. Therefore mild head injury appeared to be more complicated by psychosocial stressors. The patients with IA, despite the fact that initial head injury was mild, required longer treatment period than MVA.

  • PDF

A Safety Improvement for the Design Change of Westinghouse 2 Loop Auxiliary Feedwater System (웨스팅하우스형 원전의 보조급수계통 설계변경 영향 평가)

  • Na, Jang Hwan;Bae, Yeon Kyoung;Lee, Eun Chan
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.9 no.1
    • /
    • pp.15-19
    • /
    • 2013
  • The auxiliary feedwater is an important to remove the heat from the reactor core when the main feedwater system is unavailable. In most initiating events in Probabilistic Safety Assessment(PSA), the operaton of this system is required to mitigate the accidents. For one of domestic nuclear power plants, a design change of a turbine-driven auxiliary feedwater pump(TD-AFWP), pipe, and valves in the auxiliary system is implemented due to the aging related deterioration by long time operation. This change includes the replacement of the TD-AFWP, the relocation of some valves for improving the system availability, a new cross-tie line, and the installation of manual valves for maintenance. The design modification affects the PSA because the system is critical to mitigate the accidents. In this paper, the safety effect of the change of the auxiliary feedwater system is assessed with regard to the PSA view point. The results demonstrate that this change can supply the auxiliary feedwater from the TD-AFWP in the accident with the motor-driven auxiliary feedwater pump(MD-AFWP) unavailable due to test or maintenance. In addition, the change of MOV's normal position from "close" to "open" can deliver the water to steam generator in the loss of offsite power(LOOP) event. Therefore, it is confirmed that the design change of the auxiliary feedwater system reduces the total core damage frequency(CDF).

A Study on the Development of Collision Avoidance System for Small-Sized Vessel Using WAVE Communication Technology (WAVE 통신기반 소형 선박 충돌회피 보조시스템 개발)

  • KIM, Mong-Ju;OH, Joo-Seok;NAM, Yong-Yun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.1
    • /
    • pp.8-14
    • /
    • 2020
  • According to the statistics provided by Korean Maritime Safety Tribunal for the year 2018, the majority of marine accidents in the past four years have occurred in fishing boats and small-sized boats. Negligent behavior resulting from not looking outside and non-compliance with navigation laws are the primary reasons behind ship collisions. Although safety education and training are reinforced to prevent such accidents, they still occur frequently. Hence, technical methods are continuously being developed to reduce ship collisions caused by human cause. The objective of this study is to reduce ship collisions by employing the WAVE communication system, which has short transmitting and receiving periods that can be incorporated for high-speed small-sized vessels. In this study, the suitability of the communication range was examined, and the appropriate range and timing for avoidance motion were accordingly selected, and a control algorithm based on the same was thereby designed. Consequently normal operation of the collision avoidance system was verified by connecting and simulating the proposed WAVE communication router-controller-steering equipment.

A Study for Minimum Requirements Time of Bicycle Signal Clearance Interval (자전거 신호등의 신호변환시간 산출에 관한 연구)

  • Joo, Doo-Hwan;Yeo, Woon-Woong;Hyun, Cheol-Seung;Park, Boo-Hee;Lee, Choul-Ki;Ha, Dong-Ik
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.5
    • /
    • pp.59-66
    • /
    • 2010
  • Korea have experienced a very rapid increase in police-reported collisions between bicycle and motor vehicles over the past decade. Even though cycling accidents are increasing, efforts to make urban areas more accomodating to cyclists are seldom formed. Clearance intervals(including both the yellow change and all-red clearance intervals) at signalized intersections that are of inadequate lengths for bicycles may cause accidents. Data on bicycling speed, acceleration and deceleration were tested and analyzed on the flat. Using the results of the analysis and based on the AASHTO's equation of the bicycle clearance interval, a methodology is got for calculation safe clearance intervals for bicycle riders. The clearance interval call for bicycles will be larger or same than for vehicles because of the speed, acceleration and deceleration difference. Adequate bicycle speed, acceleration and deceleration for korean bicycle users is presented in this paper. It is hoped that traffic engineers to provide safe intersection clearance time for bicycles use the results of this paper.

A Prediction Model on Freeway Accident Duration using AFT Survival Analysis (AFT 생존분석 기법을 이용한 고속도로 교통사고 지속시간 예측모형)

  • Jeong, Yeon-Sik;Song, Sang-Gyu;Choe, Gi-Ju
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.5
    • /
    • pp.135-148
    • /
    • 2007
  • Understanding the relation between characteristics of an accident and its duration is crucial for the efficient response of accidents and the reduction of total delay caused by accidents. Thus the objective of this study is to model accident duration using an AFT metric model. Although the log-logistic and log-normal AFT models were selected based on the previous studies and statistical theory, the log-logistic model was better fitted. Since the AFT model is commonly used for the purpose of prediction, the estimated model can be also used for the prediction of duration on freeways as soon as the base accident information is reported. Therefore, the predicted information will be directly useful to make some decisions regarding the resources needed to clear accident and dispatch crews as well as will lead to less traffic congestion and much saving the injured.

Improving Accident Tolerance of Nuclear Fuel with Coated Mo-alloy Cladding

  • Cheng, Bo;Kim, Young-Jin;Chou, Peter
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.16-25
    • /
    • 2016
  • In severe loss of coolant accidents (LOCA), similar to those experienced at Fukushima Daiichi and Three Mile Island Unit 1, the zirconiumalloy fuel claddingmaterials are rapidlyheateddue to nuclear decay heating and rapid exothermic oxidation of zirconium with steam. This heating causes the cladding to rapidly react with steam, lose strength, burst or collapse, and generate large quantities of hydrogen gas. Although maintaining core cooling remains the highest priority in accident management, an accident tolerant fuel (ATF) design may extend coping and recovery time for operators to restore emergency power, and cooling, and achieve safe shutdown. An ATF is required to possess high resistance to steam oxidation to reduce hydrogen generation and sufficient mechanical strength to maintain fuel rod integrity and core coolability. The initiative undertaken by Electric Power Research Institute (EPRI) is to demonstrate the feasibility of developing an ATF cladding with capability to maintain its integrity in $1,200-1,500^{\circ}C$ steam for at least 24 hours. This ATF cladding utilizes thin-walled Mo-alloys coated with oxidation-resistant surface layers. The basic design consists of a thin-walled Mo alloy structural tube with a metallurgically bonded, oxidation-resistant outer layer. Two options are being investigated: a commercially available iron, chromium, and aluminum alloy with excellent high temperature oxidation resistance, and a Zr alloy with demonstratedcorrosionresistance.Asthese composite claddings will incorporate either no Zr, or thin Zr outer layers, hydrogen generation under severe LOCA conditions will be greatly reduced. Key technical challenges and uncertainties specific to Moalloy fuel cladding include: economic core design, industrial scale fabricability, radiation embrittlement, and corrosion and oxidation resistance during normal operation, transients, and severe accidents. Progress in each aspect has been made and key results are discussed in this document. In addition to assisting plants in meeting Light Water Reactor (LWR) challenges, accident-tolerant Mo-based cladding technologies are expected to be applicable for use in high-temperature helium and molten salt reactor designs, as well as nonnuclear high temperature applications.