Browse > Article
http://dx.doi.org/10.1016/j.net.2019.05.025

Development of a 3D thermohydraulic-neutronic coupling model for accident analysis in research miniature neutron source reactor (MNSR)  

Ahmadi, M. (Department of Nuclear Engineering, School of Mechanical Engineering, Shiraz University)
Rabiee, A. (Department of Nuclear Engineering, School of Mechanical Engineering, Shiraz University)
Pirouzmand, A. (Department of Nuclear Engineering, School of Mechanical Engineering, Shiraz University)
Publication Information
Nuclear Engineering and Technology / v.51, no.7, 2019 , pp. 1776-1783 More about this Journal
Abstract
To accurately analyze the accidents in nuclear reactors, a thermohydraulic-neutronic coupling calculation is required to solve fluid dynamics and nuclear reactor kinetics equations in fine cells simultaneously and evaluate the local effects of neutronic and thermohydraulic parameters on each other. In the present study, a 3D thermohydraulic-neutronic coupling model is developed, validated and then applied for Isfahan MNSR (Miniature Neutron Source reactor) safety analysis. The proposed model is developed using FLUENT software and user defined functions (UDF) are applied to simulate the neutronic behavior of MNSR. The validation of the proposed model is first evaluated using 1mk reactivity insertion experiment into Isfahan MNSR core. Then, the developed coupling code is applied for a design basis accident (DBA) scenario analysis with the insertion of maximum allowed cold core reactivity of 4 mk. The results show that the proposed model is able to predict the behavior of the reactor core under normal and accident conditions with a good accuracy.
Keywords
Safety analysis; Thermohydraulic-neutronic coupling; MNSR; DBA; FLUENT;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 I. Khamis, K. Khattab, Neutronics-design modification of the Syrian miniature neutron source reactor, Prog. Nucl. Energy 36 (2) (2000) 91-96.   DOI
2 A. Hainoun, F. Alhabit, November). Safety analysis of MNSR reactor during reactivity insertion accident using the validated code PARET, in: Proceedings of the International Conference on Research Reactors, Safe Management and Effective Utilization, 2007, pp. 5-9.
3 A. Hainoun, F. Alhabet, Modeling the reactor core of MNSR to simulate its dynamic behavior using the code PARET (No. AECS-NE/RSS-549), 2004. Atomic Energy Commission.
4 M. Albarhoum, Thermal-hydraulic and safety aspects of UO2 fuel for lowpower reactors, Prog. Nucl. Energy 53 (4) (2011) 354-360.   DOI
5 M. Albarhoum, Thermal-hydraulics features of the use of LEU U3Si2 fuel in low-power reactors, Ann. Nucl. Energy 37 (10) (2010) 1351-1355.   DOI
6 G. Chengzhan, MNSR Accident (Event) Analysis, China Institute of Atomic Energy, 1992 (internal report).
7 F.E. Dunn, J. Thomas, J. Liaw, J.E. Matos, MNSR Transient Analyses and Thermal Hydraulic Safety Margins for HEU and LEU Cores Using the RELAP5-3-Dimensional Code, 2008. No. INIS-US-08N0001.
8 A. Hainoun, S. Alissa, Full-scale modelling of the MNSR reactor to simulate normal operation, transients and reactivity insertion accidents under natural circulation conditions using the thermal hydraulic code ATHLET, Nucl. Eng. Des. 235 (1) (2005) 33-52.   DOI
9 N.A. Adoo, B.J.B. Nyarko, E.H.K. Akaho, E. Alhassan, V.Y. Agbodemegbe, C.Y. Bansah, R. Della, Determination of thermal hydraulic data of GHARR-1 under reactivity insertion transients using the PARET/ANL code, Nucl. Eng. Des. 241 (12) (2011) 5203-5210.   DOI
10 C. Zhao, C. Xue-Nong, R. Andrei, Z. Pengcheng, C. Hongli, Coupling a CFD code with neutron kinetics and pin thermal models for nuclear reactor safety analyses, Ann. Nucl. Energy 83 (2015) 41-49.   DOI
11 G. Jilin, General Description of Miniature Neutron Source Reactor, China Institute of Atomic Energy: internal report, 1992.
12 G. Chengzhan, Z. Xianfa, The Iranian MNSR Safety Analysis Report (SAR), China Institute of Atomic Energy: internal report, 1992.
13 M. Ahmadi, A. Pirouzmand, A. Rabiee, Neutronic Assessment of BDBA Scenario at the End of Isfahan MNSR Core Life, Nuclear Engineering and Technology, 2018.
14 M.A. Hosseini, M. Ahmadi, Miniature Neutron Source Reactors in medical research: achievements and challenges, J. Radioanal. Nucl. Chem. 314 (3) (2017) 1497-1504, 1504.   DOI
15 F. Seyfi, B. Soleimani, M.A. Hosseini, M. Rezvanifard, M. Ahmadi, The feasibility of 198 Au production in Isfahan MNSR research reactor through a multi-stage approach, J. Radioanal. Nucl. Chem. 316 (2) (2018) 435-441.   DOI
16 A. Golabian, M.A. Hosseini, M. Ahmadi, B. Soleimani, M. Rezvanifard, The feasibility study of 177Lu production in Miniature Neutron Source Reactors using a multi-stage approach in Isfahan, Iran, Appl. Radiat. Isot. 131 (2018) 62-66.   DOI
17 S.A. Agbo, Y.A. Ahmed, I.O.B. Ewa, Y. Jibrin, Analysis of Nigeria research reactor-1 thermal power calibration methods, Nucl. Eng. Technol. 48 (3) (2016) 673-683.   DOI
18 B. Soleimani, M.A. Hosseini, M. Rezvanifard, M. Ahmadi, J. Ebadati, Feasibility of 153Sm production using MNSR research reactor through a multi-stage approach, Appl. Radiat. Isot. 139 (2018) 195-200.   DOI
19 F. Faghihi, S.M. Mirvakili, Burn up calculations for the Iranian miniature reactor: a reliable and safe research reactor, Nucl. Eng. Des. 239 (6) (2009) 1000-1009.   DOI
20 Z.H.O.U. Yongmao, Neutron Capture Therapy (NCT) & In-Hospital Neutron Irradiator (IHNI)-a new technology on binary targeting radiation therapy of cancer, Eng. Sci. 7 (4) (2009) 2-21.
21 J. Mokhtari, F. Faghihi, J. Khorsandi, Design and optimization of the new LEU MNSR for neutron radiography using thermal column to upgrade thermal flux, Prog. Nucl. Energy 100 (2017) 221-232.   DOI
22 J. Ebadati, I. Shahabi, M. Rezvanifard, January). Calculation and experiment of adding top beryllium shims for Iran MNSR, in: 14th International Conference on Nuclear Engineering, American Society of Mechanical Engineers, 2006, pp. 311-314.
23 G. Chengzhan, Thermohydraulic Properties of Isfahan Miniature Neutron Source Reactor, Internal Report, 1992.
24 FLUENT 6.3 User's Guide, FLUENT Inc., 2006.
25 Monte Carlo N-Particle Transport Code System Manual, Los Alamos National Laboratory, New Mexico, April 2000.
26 D.C. Wilcox, Turbulence Modeling for CFD, third ed., DCW Industries, Inc, 2006.
27 M. Kinard, Efficient Numerical Solution of the Point Kinetics Equation, M.Sc. Thesis, Texas Tech University, 2003.
28 D.L. Hetrick, Dynamics of Nuclear Reactors, The University of Chicago Press, 1971.
29 A. Pirouzmand, A. Ghasemi, F. Faghihi, Safety analysis of LBLOCA in BDBA scenarios for the Bushehr's VVER-1000 nuclear power plant, Prog. Nucl. Energy 88 (2016) 231-239.   DOI