• 제목/요약/키워드: Noor-type iteration

검색결과 3건 처리시간 0.013초

STRONG CONVERGENCE THEOREMS FOR A QUASI CONTRACTIVE TYPE MAPPING EMPLOYING A NEW ITERATIVE SCHEME WITH AN APPLICATION

  • Chauhan, Surjeet Singh;Utreja, Kiran;Imdad, Mohammad;Ahmadullah, Md
    • 호남수학학술지
    • /
    • 제39권1호
    • /
    • pp.1-25
    • /
    • 2017
  • In this paper, we introduce a new scheme namely: CUIA-iterative scheme and utilize the same to prove a strong convergence theorem for quasi contractive mappings in Banach spaces. We also establish the equivalence of our new iterative scheme with various iterative schemes namely: Picard, Mann, Ishikawa, Agarwal et al., Noor, SP, CR etc for quasi contractive mappings besides carrying out a comparative study of rate of convergences of involve iterative schemes. The present new iterative scheme converges faster than above mentioned iterative schemes whose detailed comparison carried out with the help of different tables and graphs prepared with the help of MATLAB.

STRONG CONVERGENCE IN NOOR-TYPE ITERATIVE SCHEMES IN CONVEX CONE METRIC SPACES

  • LEE, BYUNG-SOO
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제22권2호
    • /
    • pp.185-197
    • /
    • 2015
  • The author considers a Noor-type iterative scheme to approximate com- mon fixed points of an infinite family of uniformly quasi-sup(fn)-Lipschitzian map- pings and an infinite family of gn-expansive mappings in convex cone metric spaces. His results generalize, improve and unify some corresponding results in convex met- ric spaces [1, 3, 9, 16, 18, 19] and convex cone metric spaces [8].

CONVERGENCE THEOREMS OF MULTI-STEP ITERATIVE SCHEMES WITH ERRORS FOR ASYMPTOTICALLY QUASI-NONEXPANSIVE TYPE NONSELF MAPPINGS

  • Kim, Jong-Kyu;Saluja, G.S.;Nashine, H.K.
    • East Asian mathematical journal
    • /
    • 제26권1호
    • /
    • pp.81-93
    • /
    • 2010
  • In this paper, a strong convergence theorem of multi-step iterative schemes with errors for asymptotically quasi-nonexpansive type nonself mappings is established in a real uniformly convex Banach space. Our results extend the corresponding results of Wangkeeree [12], Xu and Noor [13], Kim et al.[1,6,7] and many others.