• Title/Summary/Keyword: Nonviral gene delivery

Search Result 12, Processing Time 0.026 seconds

Nonviral Gene Delivery by a Novel Protein Transduction Domain

  • An, Songhie;Park, Jong-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2589-2593
    • /
    • 2013
  • Gene therapy using nonviral gene delivery carriers has focused on the development and modification of synthetic carriers such as liposomes and polymers. Most polymers that are commercially used are taking advantage of their polycationic character which allows not only strong ligand-DNA affinity but also competent cell penetration. Despite the relatively high transfection efficiencies, high cytotoxicity is continuously pointed out as one of the major shortcomings of polycationic polymers such as PEI. Studies on the utilization of peptides have therefore been carried out recently to overcome these problems. For these reasons, the human transcription factor Hph-1, which is currently known as a protein transduction domain (PTD), was investigated in this study to evaluate its potential as a gene delivery carrier. Although its transfection efficiency was about 10-fold lower than PEI, it displayed almost no cytotoxicity even at concentrations as high as $100{\mu}M$. Hph-1 was oxidatively polymerized to yield poly-Hph-1. The cell viability of poly-Hph-1 transfected U87MG and NIH-3T3 cells was almost as high as the control (untreated) groups, and the transfection efficiency was about 10-fold higher than PEI. This study serves as a preliminary evaluation of Hph-1 and encourages further investigation.

Galactosylated PEI-PEG as nonviral gene transfer agent for hepatocyte targeting and imaging probe

  • Kim, Eun-Mi;Oh, In-Joon;Jeong, Hwan-Jeong;Shin, Sang-Chul;Lee, Yong-Bok
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.248.3-249
    • /
    • 2003
  • Objectives: Galatosylated PEI was synthesized and characterized for gene delivery to hepatocytes. It was modified by conjugating with hydrophilic PEG to improve in vivo circulation. And we studied the possibility as an imaging modality for monitoring of gene delivery using gal-PEI derivatives. Methods: The substitution values of galactose in PEI were calculated by resorcinol/sulfuric acid method and quantity of PEG was calculated by comparing NMR peak. Cytotoxicity was determined by MTT. (omitted)

  • PDF

Synthesis and Optimization of Cholesterol-Based Diquaternary Ammonium Gemini Surfactant (Chol-GS) as a New Gene Delivery Vector

  • Kim, Bieong-Kil;Doh, Kyung-Oh;Bae, Yun-Ui;Seu, Young-Bae
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.1
    • /
    • pp.93-99
    • /
    • 2011
  • Amongst a number of potential nonviral vectors, cationic liposomes have been actively researched, with both gemini surfactants and bola amphiphiles reported as being in possession of good structures in terms of cell viability and in vitro transfection. In this study, a cholesterol-based diquaternary ammonium gemini surfactant (Chol-GS) was synthesized and assessed as a novel nonviral gene vector. Chol-GS was synthesized from cholesterol by way of four reaction steps. The optimal efficiency was found to be at a weight ratio of 1:4 of lipid:DOPE (1,2-dioleoyl-L-${\alpha}$- glycero-3-phosphatidylethanolamine), and at a ratio of between 10:1~15:1 of liposome:DNA. The transfection efficiency was compared with commercial liposomes and with Lipofectamine, 1,2-dimyristyloxypropyl-3-dimethylhydroxyethylammonium bromide (DMRIE-C), and N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTAP). The results indicate that the efficiency of Chol-GS is greater than that of all the tested commercial liposomes in COS7 and Huh7 cells, and higher than DOTAP and Lipofectamine in A549 cells. Confirmation of these findings was observed through the use of green fluorescent protein expression. Chol-GS exhibited a moderate level of cytotoxicity, at optimum concentrations for efficient transfection, indicating cell viability. Hence, the newly synthesized Chol-GS liposome has the potential of being an excellent nonviral vector for gene delivery.

Selective Gene Transfer to Hepatocellular Carcinoma Using Homing Peptide-Grafted Cationic Liposomes

  • Tu, Ying;Kim, Ji-Seon
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.4
    • /
    • pp.821-827
    • /
    • 2010
  • Gene delivery that provides targeted delivery of therapeutic genes to the cells of a lesion enhances therapeutic efficacy and reduces toxic side effects. This process is especially important in cancer therapy when it is advantageous to avoid unwanted damage to healthy normal cells. Incorporating cancer-specific ligands that recognize receptors overexpressed on cancer cells can increase selective binding and uptake and, as a result, increase targeted transgene expression. In this study, we investigated whether a peptide capable of homing to hepatocellular carcinoma (HCC) could facilitate targeted gene delivery by cationic liposomes. This homing peptide (HBP) exhibited selective binding to a human hepatocarcinoma cell line, HepG2, at a concentration ranging from 5 to 5,000 nM. When conjugated to a cationic liposome, HBP substantially increased cellular internalization of plasmid DNA to increase the transgene expression in HepG2 cells. In addition, there was no significant enhancement in gene transfer detected for other human cell lines tested, including THLE-3, AD293, and MCF-7 cells. Therefore, we demonstrate that HBP provides targeted gene delivery to HCC by cationic liposomes.

Validation of Heterodimeric TAT-NLS Peptide as a Gene Delivery Enhancer

  • Doh, Kyung-Oh
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.6
    • /
    • pp.788-794
    • /
    • 2015
  • Cationic liposomes have been actively used as gene delivery vehicles despite their unsatisfactory efficiencies because of their relatively low toxicity. In this study, we designed novel heterodimeric peptides as nonviral gene delivery systems from TAT and NLS peptides using cysteine-to-cysteine disulfide bonds between the two. Mixing these heterodimeric peptides with DNA before mixing with lipofectamine resulted in higher transfection efficiencies in MCF-7 breast cancer cells than mixing unmodified TAT, NLS, and a simple mixture of TAT and NLS with DNA, but did not show an adverse effect on cell viability. In gel retardation assays, the DNA binding affinities of heterodimeric peptides were stronger than NLS but weaker than TAT. However, this enhancement was only observed when heterodimeric peptides were premixed with DNA before being mixed with lipofectamine. The described novel transfection-enhancing peptide system produced by the heterodimerization of TAT and NLS peptides followed by simple mixing with DNA, increased the gene transfer efficiency of cationic lipids without enhancing cytotoxicity.

Nonionic Amphiphilic Surfactant Conjuncted Polyethyleneimine as a New and Highly Efficient Non-viral Gene Carrier

  • Yin, Dongfeng;Chu, Cang;Ding, Xueying;Gao, Jing;Zou, Hao;Gao, Shen
    • Macromolecular Research
    • /
    • v.17 no.1
    • /
    • pp.19-25
    • /
    • 2009
  • In order to enhance the gene delivery efficiency and decrease the cytotoxicity of polyplexes, we synthesized Solutol-g-PEI by conjugating polyethyleneimine (PEI) to Solutol (polyoxyethylene (10) stearate), and evaluated its efficiency as a possible nonviral gene carrier candidate. Structural analysis of synthesized polymer was performed by using $^1H$-NMR. Gel retardation assay, particle sizes and zeta potential measurement confirmed that the new gene carrier formed a compact complex with plasmid DNA. The complexes were smaller than 150 nm, which implicated its potential for intracellular delivery. It showed lower cytotoxicity in three different cell lines (Hela, MCF-7, and HepG2) than PEI 25 kDa. pGL3-lus was used as a reporter gene, and the transfection efficiency was in vitro measured in Hela cells. Solutol-g-PEI showed much higher transfection efficiency than unmodified PEI 25 kDa.

Apoptin gene delivery by a PAMAM dendrimer modified with a nuclear localization signal peptide as a gene carrier for brain cancer therapy

  • Bae, Yoonhee;Lee, Jell;Kho, Changwon;Choi, Joon Sig;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.5
    • /
    • pp.467-478
    • /
    • 2021
  • In this study, we aimed to synthesize PAMAMG3 derivatives (PAMAMG3-KRRR and PAMAMG3-HKRRR), using KRRR peptides as a nuclear localization signal and introduced histidine residues into the KRRR-grafted PAMAMG3 for delivering a therapeutic, carcinoma cell-selective apoptosis gene, apoptin into human primary glioma (GBL-14) cells and human dermal fibroblasts. We examined their cytotoxicity and gene expression using luciferase activity and enhanced green fluorescent protein PAMAMG3 derivatives in both cell lines. We treated cells with PAMAMG3 derivative/apoptin complexes and investigated their intracellular distribution using confocal microscopy. The PAMAMG3-KRRR and PAMAMG3-HKRRR dendrimers were found to escape from endolysosomes into the cytosol. The JC-1 assay, glutathione levels, and Annexin V staining results showed that apoptin triggered cell death in GBL-14 cells. Overall, these findings indicated that the PAMAMG3-HKRRR/apoptin complex is a potential candidate for an effective nonviral gene delivery system for brain tumor therapy in vitro.

PAMAM Dendrimers Conjugated with L-Arginine and γ-Aminobutyric Acid as Novel Polymeric Gene Delivery Carriers

  • Son, Sang Jae;Yu, Gwang Sig;Choe, Yun Hui;Kim, Youn-Joong;Lee, Eunji;Park, Jong-Sang;Choi, Joon Sig
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.579-584
    • /
    • 2013
  • In this study, we synthesized functional dendrimer derivatives as nonviral gene delivery vectors. Poly(amidoamine) dendrimer (PAMAM, generation 4) was modified to possess functional amino acids to enhance gene transfection efficiency. PAMAM G4 derivatives conjugated with L-arginine (Arg) and ${\gamma}$-aminobutyric acid (GABA) showed higher transfection efficiency and lower cytotoxicity compared to the native PAMAM G4 dendrimer. The polyplex of the PAMAM G4 derivative/pDNA was evaluated using an agarose gel retardation assay and Picogreen reagent assay. Additionally, the MTT assay was performed to examine the cytotoxicity of synthesized polymers. All PAMAM G4 derivatives showed lower cytotoxicity than PEI25kD. Particularly, PAMAM G4-GABA-Arg displayed enhanced transfection efficiency compared to the native PAMAM G4 dendrimer.

Atomic Force Microscopy(AFM) based Single Cell Manipulation and High Efficient Gene Delivery Technology (원자간력 현미경을 이용한 단일세포 조작 및 고효율 유전자 도입기술)

  • Han, Sung-Woong;Nakamura, Chikashi;Miyake, Jun;Kim, Woo-Sik;Kim, Jong-Min;Chang, Sang-Mok
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.538-545
    • /
    • 2009
  • The principle and application of a scanning probe microscopy(SPM) are reviewed briefly, and a low-invasive single cell manipulation and a gene delivery technique using an etched atomic force microscopy(AFM) probe tip, which we call a nanoneedle, are explained in detail. The nanoneedle insertion into a cell can be judged by a sudden drop of force in a force-distance curve. The probabilities of nanoneedle insertion into cells were 80~90%, which were higher than those of typical microinjection capillaries. When the diameter of the nanoneedle was smaller than 400 nm, the nanoneedle insertion into a cell over 1 hour had almost no influence on the cell viability. A highly efficient gene delivery and a high ratio of expressed gene per delivered DNA compared the conventional major nonviral gene delivery methods could be achieved using the gene modified nanoneedle.

Enhancement of Gene Delivery Using Novel Homodimeric Tat Peptide Formed by Disulfide Bond

  • Lee, Soo-Jin;Yoon, Sung-Hwa;Doh, Kyung-Oh
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.8
    • /
    • pp.802-807
    • /
    • 2011
  • Cationic liposomes have been actively used as gene delivery vehicle because of their minimal toxicity, but their relatively low efficiency of gene delivery is the major disadvantage of these vectors. Recently, cysteine residue incorporation to HIV-1 Tat peptide increased liposomemediated transfection compared with unmodified Tat peptide. Therefore, we designed a novel modified Tat peptide having a homodimeric (Tat-CTHD, Tat-NTHD) and closed structure (cyclic Tat) simply by using the disulfide bond between cysteines to develop a more efficient and safe nonviral gene delivery system. The mixing of Tat-CTHD and Tat-NTHD with DNA before mixing with lipofectamine increased the transfection efficiency compared with unmodified Tat peptide and lipofectamine only in MCF-7 breast cancer cells and rat vascular smooth muscle cells. However, cyclic Tat did not show any improvement in the transfection efficiency. In the gel retardation assay, Tat-CTHD and Tat-NTHD showed more strong binding with DNA than unmodified Tat and cyclic Tat peptide. This enhancement was only shown when Tat-CTHD and Tat-NTHD were mixed with DNA before mixing with lipofectamine. The effects of Tat- CTHD and Tat-NTHD were also valid in the experiment using DOTAP and DMRIE instead of lipofectamine. We could not find any significant cytotoxicity in the working concentration and more usage of these peptides. In conclusion, we have designed a novel transfection-enhancing peptide by easy homodimerization of Tat peptide, and the simple mix of these novel peptides with DNA increased the gene transfer of cationic lipids more efficiently with no additional cytotoxicity.