Browse > Article
http://dx.doi.org/10.4014/jmb.1105.05041

Enhancement of Gene Delivery Using Novel Homodimeric Tat Peptide Formed by Disulfide Bond  

Lee, Soo-Jin (Department of Molecular Science and Technology, Ajou University)
Yoon, Sung-Hwa (Department of Molecular Science and Technology, Ajou University)
Doh, Kyung-Oh (Department of Physiology, College of Medicine, Yeungnam University)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.8, 2011 , pp. 802-807 More about this Journal
Abstract
Cationic liposomes have been actively used as gene delivery vehicle because of their minimal toxicity, but their relatively low efficiency of gene delivery is the major disadvantage of these vectors. Recently, cysteine residue incorporation to HIV-1 Tat peptide increased liposomemediated transfection compared with unmodified Tat peptide. Therefore, we designed a novel modified Tat peptide having a homodimeric (Tat-CTHD, Tat-NTHD) and closed structure (cyclic Tat) simply by using the disulfide bond between cysteines to develop a more efficient and safe nonviral gene delivery system. The mixing of Tat-CTHD and Tat-NTHD with DNA before mixing with lipofectamine increased the transfection efficiency compared with unmodified Tat peptide and lipofectamine only in MCF-7 breast cancer cells and rat vascular smooth muscle cells. However, cyclic Tat did not show any improvement in the transfection efficiency. In the gel retardation assay, Tat-CTHD and Tat-NTHD showed more strong binding with DNA than unmodified Tat and cyclic Tat peptide. This enhancement was only shown when Tat-CTHD and Tat-NTHD were mixed with DNA before mixing with lipofectamine. The effects of Tat- CTHD and Tat-NTHD were also valid in the experiment using DOTAP and DMRIE instead of lipofectamine. We could not find any significant cytotoxicity in the working concentration and more usage of these peptides. In conclusion, we have designed a novel transfection-enhancing peptide by easy homodimerization of Tat peptide, and the simple mix of these novel peptides with DNA increased the gene transfer of cationic lipids more efficiently with no additional cytotoxicity.
Keywords
Tat peptide; gene therapy; liposome; transfection;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 Piron, J., K. L. Quang, F. Briec, J. C. Amirault, A. L. Leoni, L. Desigaux, et al. 2008. Biological pacemaker engineered by nonviral gene transfer in a mouse model of complete atrioventricular block. Mol. Ther. 16: 1937-1943.   DOI   ScienceOn
2 Pooga, M., M. Hallbrink, M. Zorko, and U. Langel. 1998. Cell penetration by transportan. FASEB J. 12: 67-77.   DOI
3 Qin, B. and K. Cheng. 2011. Silencing of the IKKepsilon gene by siRNA inhibits invasiveness and growth of breast cancer cells. Breast Cancer Res. 12: R74.
4 Rudolph, C., C. Plank, J. Lausier, U. Schillinger, R. H. Muller, and J. Rosenecker. 2003. Oligomers of the arginine-rich motif of the HIV-1 TAT protein are capable of transferring plasmid DNA into cells. J. Biol. Chem. 278: 11411-11418.   DOI
5 Moon, I. J., H. Kang, Y. B. Seu, B. C. Chang, D. K. Song, and J. G. Park. 2007. Marked transfection enhancement by the DPL (DNA/peptide/lipid) complex. Int. J. Mol. Med. 20: 429-437.
6 Oh, Y. K. and T. G. Park. 2009. siRNA delivery systems for cancer treatment. Adv. Drug Deliv. Rev. 61: 850-862.   DOI   ScienceOn
7 McKenzie, D. L., K. Y. Kwok, and K. G. Rice. 2000. A potent new class of reductively activated peptide gene delivery agents. J. Biol. Chem. 275: 9970-9977.   DOI
8 Pappalardo, J. S., V. Quattrocchi, C. Langellotti, S. Di Giacomo, V. Gnazzo, V. Olivera, et al. 2009. Improved transfection of spleen-derived antigen-presenting cells in culture using TATpliposomes. J. Control. Release 134: 41-46.   DOI   ScienceOn
9 Park, Y., K. Y. Kwok, C. Boukarim, and K. G. Rice. 2002. Synthesis of sulfhydryl cross-linking poly(ethylene glycol)-peptides and glycopeptides as carriers for gene delivery. Bioconjug. Chem. 13: 232-239.   DOI   ScienceOn
10 Maeda, H., J. Wu, T. Sawa, Y. Matsumura, and K. Hori. 2000. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J. Control. Release 65: 271-284.   DOI   ScienceOn
11 McKenzie, D. L., E. Smiley, K. Y. Kwok, and K. G. Rice. 2000. Low molecular weight disulfide cross-linking peptides as nonviral gene delivery carriers. Bioconjug. Chem. 11: 901-909.   DOI   ScienceOn
12 Joliot, A., C. Pernelle, H. Deagostini-Bazin, and A. Prochiantz. 1991. Antennapedia homeobox peptide regulates neural morphogenesis. Proc. Natl. Acad. Sci. USA 88: 1864-1868.   DOI   ScienceOn
13 Kawase, Y., D. Ladage, and R. J. Hajjar. 2011. Rescuing the failing heart by targeted gene transfer. J. Am. Coll. Cardiol. 57: 1169-1180.   DOI   ScienceOn
14 Lanford, R. E., P. Kanda, and R. C. Kennedy. 1986. Induction of nuclear transport with a synthetic peptide homologous to the SV40 T antigen transport signal. Cell 46: 575-582.   DOI   ScienceOn
15 Lo, S. L. and S. Wang. 2008. An endosomolytic Tat peptide produced by incorporation of histidine and cysteine residues as a nonviral vector for DNA transfection. Biomaterials 29: 2408- 2414.   DOI   ScienceOn
16 Hyndman, L., J. L. Lemoine, L. Huang, D. J. Porteous, A. C. Boyd, and X. Nan. 2004. HIV-1 Tat protein transduction domain peptide facilitates gene transfer in combination with cationic liposomes. J. Control. Release 99: 435-444.   DOI   ScienceOn
17 Ignatovich, I. A., E. B. Dizhe, A. V. Pavlotskaya, B. N. Akifiev, S. V. Burov, S. V. Orlov, and A. P. Perevozchikov. 2003. Complexes of plasmid DNA with basic domain 47-57 of the HIV-1 Tat protein are transferred to mammalian cells by endocytosis-mediated pathways. J. Biol. Chem. 278: 42625- 42636.   DOI
18 Karmali, P. P. and A. Chaudhuri. 2007. Cationic liposomes as non-viral carriers of gene medicines: Resolved issues, open questions, and future promises. Med. Res. Rev. 27: 696-722.   DOI   ScienceOn
19 Siprashvili, Z., F. A. Scholl, S. F. Oliver, A. Adams, C. H. Contag, P. A. Wender, and P. A. Khavari. 2003. Gene transfer via reversible plasmid condensation with cysteine-flanked, internally spaced arginine-rich peptides. Hum. Gene Ther. 14: 1225-1233.   DOI   ScienceOn
20 Wadia, J. S., R. V. Stan, and S. F. Dowdy. 2004. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat. Med. 10: 310-315.   DOI   ScienceOn
21 Torchilin, V. P., T. S. Levchenko, R. Rammohan, N. Volodina, B. Papahadjopoulos-Sternberg, and G. G. D'Souza. 2003. Cell transfection in vitro and in vivo with nontoxic TAT peptideliposome- DNA complexes. Proc. Natl. Acad. Sci. USA 100: 1972-1977.   DOI   ScienceOn
22 Vijayanathan, V., T. Thomas, and T. J. Thomas. 2002. DNA nanoparticles and development of DNA delivery vehicles for gene therapy. Biochemistry 41: 14085-14094.   DOI   ScienceOn
23 Vives, E., P. Brodin, and B. Lebleu. 1997. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 272: 16010-16017.   DOI
24 Frankel, A. D. and C. O. Pabo. 1988. Cellular uptake of the Tat protein from human immunodeficiency virus. Cell 55: 1189- 1193.   DOI   ScienceOn
25 Yamano, S., J. Dai, C. Yuvienco, S. Khapli, A. M. Moursi, and J. K. Montclare. 2011. Modified Tat peptide with cationic lipids enhances gene transfection efficiency via temperature-dependent and caveolae-mediated endocytosis. J. Control. Release.
26 Zhang, S., B. Zhao, H. Jiang, B. Wang, and B. Ma. 2007. Cationic lipids and polymers mediated vectors for delivery of siRNA. J. Control. Release 123: 1-10.   DOI   ScienceOn
27 Anwer, K., M. N. Barnes, J. Fewell, D. H. Lewis, and R. D. Alvarez. 2010. Phase-I clinical trial of IL-12 plasmid/lipopolymer complexes for the treatment of recurrent ovarian cancer. Gene Ther. 17: 360-369.   DOI   ScienceOn
28 Astriab-Fisher, A., D. Sergueev, M. Fisher, B. R. Shaw, and R. L. Juliano. 2002. Conjugates of antisense oligonucleotides with the Tat and antennapedia cell-penetrating peptides: Effects on cellular uptake, binding to target sequences, and biologic actions. Pharm. Res. 19: 744-754.   DOI   ScienceOn
29 Bulaj, G., T. Kortemme, and D. P. Goldenberg. 1998. Ionizationreactivity relationships for cysteine thiols in polypeptides. Biochemistry 37: 8965-8972.   DOI   ScienceOn
30 Cheng, S., W. S. Craig, D. Mullen, J. F. Tschopp, D. Dixon, and M. D. Pierschbacher. 1994. Design and synthesis of novel cyclic RGD-containing peptides as highly potent and selective integrin alpha IIb beta 3 antagonists. J. Med. Chem. 37: 1-8.   DOI   ScienceOn
31 Green, M. and P. M. Loewenstein. 1988. Autonomous functional domains of chemically synthesized human immunodeficiency virus Tat trans-activator protein. Cell 55: 1179-1188.   DOI   ScienceOn
32 Hu, Y., K. Li, L. Wang, S. Yin, Z. Zhang, and Y. Zhang. 2010. Pegylated immuno-lipopolyplexes: A novel non-viral gene delivery system for liver cancer therapy. J. Control. Release 144: 75-81.   DOI   ScienceOn
33 Elmquist, A., M. Lindgren, T. Bartfai, and U. Langel. 2001. VE-cadherin-derived cell-penetrating peptide, pVEC, with carrier functions. Exp. Cell Res. 269: 237-244.   DOI   ScienceOn