Browse > Article
http://dx.doi.org/10.4014/jmb.0910.10008

Selective Gene Transfer to Hepatocellular Carcinoma Using Homing Peptide-Grafted Cationic Liposomes  

Tu, Ying (Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center)
Kim, Ji-Seon (Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.4, 2010 , pp. 821-827 More about this Journal
Abstract
Gene delivery that provides targeted delivery of therapeutic genes to the cells of a lesion enhances therapeutic efficacy and reduces toxic side effects. This process is especially important in cancer therapy when it is advantageous to avoid unwanted damage to healthy normal cells. Incorporating cancer-specific ligands that recognize receptors overexpressed on cancer cells can increase selective binding and uptake and, as a result, increase targeted transgene expression. In this study, we investigated whether a peptide capable of homing to hepatocellular carcinoma (HCC) could facilitate targeted gene delivery by cationic liposomes. This homing peptide (HBP) exhibited selective binding to a human hepatocarcinoma cell line, HepG2, at a concentration ranging from 5 to 5,000 nM. When conjugated to a cationic liposome, HBP substantially increased cellular internalization of plasmid DNA to increase the transgene expression in HepG2 cells. In addition, there was no significant enhancement in gene transfer detected for other human cell lines tested, including THLE-3, AD293, and MCF-7 cells. Therefore, we demonstrate that HBP provides targeted gene delivery to HCC by cationic liposomes.
Keywords
Nonviral gene delivery; cancer-targeted gene delivery; hepatocellular carcinoma; cancer homing peptide; phage-display peptide library;
Citations & Related Records

Times Cited By Web Of Science : 6  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Ishizaki, Y. and S. Kawasaki. 2008. The evolution of liver transplantation for hepatocellular carcinoma (past, present, and future). J. Gastroenterol. 43: 18-26.   DOI   ScienceOn
2 Liu, Y., S.-F. Yang, Y. Li, H. Xu, L. Qin, and J.-H. Tay. 2004. The influence of cell and substratum surface hydrophobicities on microbial attachment. J. Biotech. 110: 251-256.   DOI   ScienceOn
3 Smith, P., R. Krohn, and G. Hermanson. 1985. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150: 76-85.   DOI   ScienceOn
4 Schwartz, M., S. Roayaie, and M. Konstadoulakis. 2007. Strategies for the management of hepatocellular carcinoma. Nat. Clin. Pract. Oncol. 4: 424-432.
5 Moolten, F. L. 1994. Drug sensitivity ("suicide") genes for selective cancer chemotherapy. Cancer Gene Ther. 1: 279-287.
6 Si, S., Y. Sun, Z. Li, W. Ge, X. Zhang, P. Hu, et al. 2006. Gene therapy by membrane-expressed superantigen for alpha-fetoprotein-producing hepatocellular carcinoma. Gene Ther. 13: 1603-1610.   DOI   ScienceOn
7 Nowakowski, G. S., M. S. Dooner, H. M. Valinski, A. M. Mihaliak, P. J. Quesenberry, and P. S. Becker. 2004. A specific heptapeptide from a phage display peptide library homes to bone marrow and binds to primitive hematopoietic stem cells. Stem Cells 22: 1030-1038.   DOI   ScienceOn
8 Rosenthal, P. 2008. Hepatocarcinoma in viral and metabolic liver disease. J. Pediatr. Gastroenterol. Nutr. 46: 370-375.   DOI   ScienceOn
9 Lo, A., C. T. Lin, and H. C. Wu. 2008. Hepatocellular carcinoma cell-specific peptide ligand for targeted drug delivery. Mol. Cancer Ther. 7: 579-589.   DOI   ScienceOn
10 Martin, J. and J. F. Dufour. 2008. Tumor suppressor and hepatocellular carcinoma. World J. Gastroenterol. 14: 1720-1733.   DOI   ScienceOn
11 Kondo, M., T. Asai, Y. Katanasaka, Y. Sadzuka, H. Tsukada, K. Ogino, T. Taki, K. Baba, and N. Oku. 2004. Anti-neovascular therapy by liposomal drug targeted to membrane type-1 matrix metalloproteinase. Int. J. Cancer 108: 301-306.   DOI   ScienceOn
12 Willhauck, M. J., B. R. Sharif Samani, K. Klutz, N. Cengic, I. Wolf, L. Mohr, et al. 2008. Alpha-fetoprotein promoter-targeted sodium iodide symporter gene therapy of hepatocellular carcinoma. Gene Ther. 15: 214-223.   DOI   ScienceOn
13 Liu, J., W. Du, and D. Fan. 2008. Survivin, the promising target in hepatocellular carcinoma gene therapy. Cancer Biol. Ther. 7: 555-556.   DOI   ScienceOn
14 Kaplan, D. E. and K. R. Reddy. 2003. Rising incidence of hepatocellular carcinoma: The role of hepatitis B and C; the impact on transplantation and outcomes. Clin. Liver Dis. 7: 683-714.   DOI   ScienceOn
15 Hui, K. M. 2007. Current approaches in the transcriptional-guided gene therapy of human hepatocellular carcinoma. Curr. Opin. Mol. Ther. 9: 378-384.
16 Essler, M. and E. Ruoslahti. 2002. Molecular specialization of breast vasculature: A breast-homing phage-displayed peptide binds to aminopeptidase P in breast vasculature. Proc. Natl. Acad. Sci. U.S.A. 99: 2252-2257.   DOI   ScienceOn
17 Gan, Z. F., J. S. Jiang, Y. Yang, B. Du, M. Qian, and P. Zhang. 2008. Immobilization of homing peptide on magnetite nanoparticles and its specificity in vitro. J. Biomed. Mater. Res. A 84: 10-18.
18 Escarda, A., P. Vaquer, L. Bonet, S. Miralbes, C. Gomez, and A. Obrador. 2006. Clivus metastasis from hepatocarcinoma associated with transarterial hepatic chemoembolization. Gastroenterol. Hepatol. 29: 401-404.   DOI   ScienceOn
19 Zhu, L., Z. Ye, K. Cheng, D. D. Miller, and R. I. Mahato. 2008. Site-specific delivery of oligonucleotides to hepatocytes after systemic administration. Bioconjug. Chem. 19: 290-298.   DOI   ScienceOn
20 Duffy, J. P., J. R. Hiatt, and R. W. Busuttil. 2008. Surgical resection of hepatocellular carcinoma. Cancer J. 14: 100-110.   DOI   ScienceOn
21 Asai, T., K. Shimizu, M. Kondo, K. Kuromi, K. Watanabe, K. Ogino, et al. 2002. Anti-neovascular therapy by liposomal DPP-CNDAC targeted to angiogenic vessels. FEBS Lett. 520: 167-170.   DOI   ScienceOn
22 Zhang, B., Y. Zhang, J. Wang, Y. Zhang, J. Chen, Y. Pan, et al. 2007. Screening and identification of a targeting peptide to hepatocarcinoma from a phage display peptide library. Mol. Med. 13: 246-254.
23 Tsuchiyama, T., Y. Nakamoto, Y. Sakai, Y. Marukawa, M. Kitahara, N. Mukaida, and S. Kaneko. 2007. Prolonged, NK cell-mediated antitumor effects of suicide gene therapy combined with monocyte chemoattractant protein-1 against hepatocellular carcinoma. J. Immunol. 178: 574-583.
24 Drozdzik, M., C. Qian, X. Xie, D. Peng, R. Bilbao, G. Mazzolini, and J. Prieto. 2000. Combined gene therapy with suicide gene and interleukin-12 is more efficient than therapy with one gene alone in a murine model of hepatocellular carcinoma. J. Hepatol. 32: 279-286.   DOI   ScienceOn
25 Connors, T. A. 1995. The choice of prodrugs for gene directed enzyme prodrug therapy of cancer. Gene Ther. 2: 702-709.
26 Wang, Y., F. Huang, H. Cai, S. Zhong, X. Liu, and W. S. Tan. 2008. Potent antitumor effect of TRAIL mediated by a novel adeno-associated viral vector targeting to telomerase activity for human hepatocellular carcinoma. J. Gene Med. 10: 518-526.   DOI   ScienceOn
27 Tse, L. Y., X. Sun, H. Jiang, X. Dong, P. W. Fung, F. Farzaneh, and R. Xu. 2008. Adeno-associated virus-mediated expression of kallistatin suppresses local and remote hepatocellular carcinomas. J. Gene Med. 10: 508-517.
28 Stefani, A. L., L. Barzon, I. Castagliuolo, M. Guido, M. Pacenti, C. Parolin, F. Farinati, and G. Palu. 2005. Systemic efficacy of combined suicide/cytokine gene therapy in a murine model of hepatocellular carcinoma. J. Hepatol. 42: 728-735.   DOI   ScienceOn