DOI QR코드

DOI QR Code

Selective Gene Transfer to Hepatocellular Carcinoma Using Homing Peptide-Grafted Cationic Liposomes

  • Tu, Ying (Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center) ;
  • Kim, Ji-Seon (Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center)
  • Received : 2009.10.08
  • Accepted : 2010.01.05
  • Published : 2010.04.28

Abstract

Gene delivery that provides targeted delivery of therapeutic genes to the cells of a lesion enhances therapeutic efficacy and reduces toxic side effects. This process is especially important in cancer therapy when it is advantageous to avoid unwanted damage to healthy normal cells. Incorporating cancer-specific ligands that recognize receptors overexpressed on cancer cells can increase selective binding and uptake and, as a result, increase targeted transgene expression. In this study, we investigated whether a peptide capable of homing to hepatocellular carcinoma (HCC) could facilitate targeted gene delivery by cationic liposomes. This homing peptide (HBP) exhibited selective binding to a human hepatocarcinoma cell line, HepG2, at a concentration ranging from 5 to 5,000 nM. When conjugated to a cationic liposome, HBP substantially increased cellular internalization of plasmid DNA to increase the transgene expression in HepG2 cells. In addition, there was no significant enhancement in gene transfer detected for other human cell lines tested, including THLE-3, AD293, and MCF-7 cells. Therefore, we demonstrate that HBP provides targeted gene delivery to HCC by cationic liposomes.

Keywords

References

  1. Asai, T., K. Shimizu, M. Kondo, K. Kuromi, K. Watanabe, K. Ogino, et al. 2002. Anti-neovascular therapy by liposomal DPP-CNDAC targeted to angiogenic vessels. FEBS Lett. 520: 167-170. https://doi.org/10.1016/S0014-5793(02)02821-1
  2. Connors, T. A. 1995. The choice of prodrugs for gene directed enzyme prodrug therapy of cancer. Gene Ther. 2: 702-709.
  3. Drozdzik, M., C. Qian, X. Xie, D. Peng, R. Bilbao, G. Mazzolini, and J. Prieto. 2000. Combined gene therapy with suicide gene and interleukin-12 is more efficient than therapy with one gene alone in a murine model of hepatocellular carcinoma. J. Hepatol. 32: 279-286. https://doi.org/10.1016/S0168-8278(00)80073-2
  4. Duffy, J. P., J. R. Hiatt, and R. W. Busuttil. 2008. Surgical resection of hepatocellular carcinoma. Cancer J. 14: 100-110. https://doi.org/10.1097/PPO.0b013e31816a5c1f
  5. Escarda, A., P. Vaquer, L. Bonet, S. Miralbes, C. Gomez, and A. Obrador. 2006. Clivus metastasis from hepatocarcinoma associated with transarterial hepatic chemoembolization. Gastroenterol. Hepatol. 29: 401-404. https://doi.org/10.1157/13091453
  6. Essler, M. and E. Ruoslahti. 2002. Molecular specialization of breast vasculature: A breast-homing phage-displayed peptide binds to aminopeptidase P in breast vasculature. Proc. Natl. Acad. Sci. U.S.A. 99: 2252-2257. https://doi.org/10.1073/pnas.251687998
  7. Gan, Z. F., J. S. Jiang, Y. Yang, B. Du, M. Qian, and P. Zhang. 2008. Immobilization of homing peptide on magnetite nanoparticles and its specificity in vitro. J. Biomed. Mater. Res. A 84: 10-18.
  8. Hui, K. M. 2007. Current approaches in the transcriptional-guided gene therapy of human hepatocellular carcinoma. Curr. Opin. Mol. Ther. 9: 378-384.
  9. Ishizaki, Y. and S. Kawasaki. 2008. The evolution of liver transplantation for hepatocellular carcinoma (past, present, and future). J. Gastroenterol. 43: 18-26. https://doi.org/10.1007/s00535-007-2141-x
  10. Kaplan, D. E. and K. R. Reddy. 2003. Rising incidence of hepatocellular carcinoma: The role of hepatitis B and C; the impact on transplantation and outcomes. Clin. Liver Dis. 7: 683-714. https://doi.org/10.1016/S1089-3261(03)00060-6
  11. Kondo, M., T. Asai, Y. Katanasaka, Y. Sadzuka, H. Tsukada, K. Ogino, T. Taki, K. Baba, and N. Oku. 2004. Anti-neovascular therapy by liposomal drug targeted to membrane type-1 matrix metalloproteinase. Int. J. Cancer 108: 301-306. https://doi.org/10.1002/ijc.11526
  12. Liu, J., W. Du, and D. Fan. 2008. Survivin, the promising target in hepatocellular carcinoma gene therapy. Cancer Biol. Ther. 7: 555-556. https://doi.org/10.4161/cbt.7.4.5891
  13. Liu, Y., S.-F. Yang, Y. Li, H. Xu, L. Qin, and J.-H. Tay. 2004. The influence of cell and substratum surface hydrophobicities on microbial attachment. J. Biotech. 110: 251-256. https://doi.org/10.1016/j.jbiotec.2004.02.012
  14. Lo, A., C. T. Lin, and H. C. Wu. 2008. Hepatocellular carcinoma cell-specific peptide ligand for targeted drug delivery. Mol. Cancer Ther. 7: 579-589. https://doi.org/10.1158/1535-7163.MCT-07-2359
  15. Martin, J. and J. F. Dufour. 2008. Tumor suppressor and hepatocellular carcinoma. World J. Gastroenterol. 14: 1720-1733. https://doi.org/10.3748/wjg.14.1720
  16. Moolten, F. L. 1994. Drug sensitivity ("suicide") genes for selective cancer chemotherapy. Cancer Gene Ther. 1: 279-287.
  17. Nowakowski, G. S., M. S. Dooner, H. M. Valinski, A. M. Mihaliak, P. J. Quesenberry, and P. S. Becker. 2004. A specific heptapeptide from a phage display peptide library homes to bone marrow and binds to primitive hematopoietic stem cells. Stem Cells 22: 1030-1038. https://doi.org/10.1634/stemcells.22-6-1030
  18. Rosenthal, P. 2008. Hepatocarcinoma in viral and metabolic liver disease. J. Pediatr. Gastroenterol. Nutr. 46: 370-375. https://doi.org/10.1097/MPG.0b013e318158799b
  19. Schwartz, M., S. Roayaie, and M. Konstadoulakis. 2007. Strategies for the management of hepatocellular carcinoma. Nat. Clin. Pract. Oncol. 4: 424-432.
  20. Si, S., Y. Sun, Z. Li, W. Ge, X. Zhang, P. Hu, et al. 2006. Gene therapy by membrane-expressed superantigen for alpha-fetoprotein-producing hepatocellular carcinoma. Gene Ther. 13: 1603-1610. https://doi.org/10.1038/sj.gt.3302823
  21. Smith, P., R. Krohn, and G. Hermanson. 1985. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150: 76-85. https://doi.org/10.1016/0003-2697(85)90442-7
  22. Stefani, A. L., L. Barzon, I. Castagliuolo, M. Guido, M. Pacenti, C. Parolin, F. Farinati, and G. Palu. 2005. Systemic efficacy of combined suicide/cytokine gene therapy in a murine model of hepatocellular carcinoma. J. Hepatol. 42: 728-735. https://doi.org/10.1016/j.jhep.2004.12.037
  23. Tse, L. Y., X. Sun, H. Jiang, X. Dong, P. W. Fung, F. Farzaneh, and R. Xu. 2008. Adeno-associated virus-mediated expression of kallistatin suppresses local and remote hepatocellular carcinomas. J. Gene Med. 10: 508-517.
  24. Tsuchiyama, T., Y. Nakamoto, Y. Sakai, Y. Marukawa, M. Kitahara, N. Mukaida, and S. Kaneko. 2007. Prolonged, NK cell-mediated antitumor effects of suicide gene therapy combined with monocyte chemoattractant protein-1 against hepatocellular carcinoma. J. Immunol. 178: 574-583.
  25. Wang, Y., F. Huang, H. Cai, S. Zhong, X. Liu, and W. S. Tan. 2008. Potent antitumor effect of TRAIL mediated by a novel adeno-associated viral vector targeting to telomerase activity for human hepatocellular carcinoma. J. Gene Med. 10: 518-526. https://doi.org/10.1002/jgm.1177
  26. Willhauck, M. J., B. R. Sharif Samani, K. Klutz, N. Cengic, I. Wolf, L. Mohr, et al. 2008. Alpha-fetoprotein promoter-targeted sodium iodide symporter gene therapy of hepatocellular carcinoma. Gene Ther. 15: 214-223. https://doi.org/10.1038/sj.gt.3303057
  27. Zhang, B., Y. Zhang, J. Wang, Y. Zhang, J. Chen, Y. Pan, et al. 2007. Screening and identification of a targeting peptide to hepatocarcinoma from a phage display peptide library. Mol. Med. 13: 246-254.
  28. Zhu, L., Z. Ye, K. Cheng, D. D. Miller, and R. I. Mahato. 2008. Site-specific delivery of oligonucleotides to hepatocytes after systemic administration. Bioconjug. Chem. 19: 290-298. https://doi.org/10.1021/bc070126m

Cited by

  1. Influence of phospholipid composition on cationic emulsions/DNA complexes: physicochemical properties, cytotoxicity, and transfection on Hep G2 cells vol.6, pp.None, 2010, https://doi.org/10.2147/ijn.s22335
  2. Active targeting of asiaglycoprotein receptor using sterically stabilized lipoplexes vol.118, pp.11, 2010, https://doi.org/10.1002/ejlt.201500590
  3. Peptide-Conjugated Nanoparticles as Targeted Anti-angiogenesis Therapeutic and Diagnostic in Cancer vol.26, pp.30, 2010, https://doi.org/10.2174/0929867326666190620100800