• Title/Summary/Keyword: Nonuniformity of Velocity

Search Result 12, Processing Time 0.019 seconds

An Analysis of Engine Cooling using a Three-dimensional Radiator Model (3차원 방열기 모델을 이용한 엔진냉각 해석)

  • 이영림
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.10-17
    • /
    • 2001
  • The performance of a radiator is generally determined using a wind tunnel, in which the air velocity is uniform. However, when it is installed in a car, the distribution of the air velocity becomes nonuniform due to front-end openings, cross members, and horns etc., resulting in lower performance. In this study, several underhood flow simulations have been first performed to get flow rates and velocity distributions over the radiator. Secondly heat release rates are calculated by both a performance curve and a radiator model. Finally, using an engine cooling system simulator, radiator-top-tank temperature is predicted and the variations of heat release rate and radiator-top-tank temperature with nonuniformity of air velocity distributions are analyzed. The results show that the current engine cooling model successfully accounts for the nonuniformity effects that should be considered for higher accuracy in predicting engine cooling performance.

  • PDF

Effects of Asymmetric Tip Clearance on Centrifugal Compressor Flow (비대칭 팁간극이 원심압축기의 유동에 미치는 영향)

  • Yoon, Yong-Sang;Song, Seung-Jin
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.533-541
    • /
    • 2005
  • Compared to axial compressors, an analytical model capable of analyzing the flow in centrifugal compressor lacks because of the difficulty in governing equations for radial duct. Therefore, this paper presents a new model to predict flow field in a centrifugal compressor with a sinusoidal asymmetric tip clearance. To predict the 2 dimensional flow in the inlet and exit of the centrifugal compressor, the two flow fields are connected with compressor characteristic based on Moore-Greitzer model. Contrary to axial compressors, the nonuniformity of impeller exit pressure in centrifugal compressor decreases as flow coefficient decreases. In addition, that is sensitive to the slope of pressure rise by eccentricity. The maximum velocity exists right before the maximum tip clearance.

  • PDF

Thermal Behavior of Automotive Ventilated Disk Brake (자동차 디스크 브레이크의 방열성능에 관한 연구)

  • 김진택;백병준
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.186-192
    • /
    • 2000
  • The heat generated in contact type braking system can cause an unacceptable braking performance. Thermal behavior of ventilated disk brake system is presented in this paper. The temperature and velocity fields of 3-D unsteady simulated model are obtained using a software package "FLUENT". The numerical results show that there exits a temperature nonuniformity between the disk faces contacting with pads. The conduction rate through the disk and pad is calculated and the effect of material conductivity is also investigated.estigated.

  • PDF

Measurement of the Slurry Flow-Field during Chemical Mechanical Polishing (Particle Image Velocimetry 기법을 이용하여, Chemical Mechanical Polishing 공정시 Slurry 유동장 측정)

  • Shin, Sang-Hee;Kim, Mun-Ki;Koh, Young-Ho;Kim, Ho-Young;Lee, Jae-Dong;Hong, Chang-Ki;Yoon, Young-Bin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.125-128
    • /
    • 2004
  • Chemical Mechanical Polishing(CMP) in semiconductor production is characterized its output property by Removal Rate(RR) and Non-Uniformity(NU). Some Previous works shows that RR is determined by production of pressure and velocity and NC is also largely affected by velocity of flow-field during CMP. This study is about the direct measurement of velocity of slurry during CMP and reconstruction whole flow-field by Particle Image Velocimetry(PIV) Techniques. Typical PIV system is tuned adequately for inspecting CMP and Slurry Flow-field is measured by changing both Pad RPM and Carrier RPM. The results show that velocity is majorly determined not by Carrier RPM, but by Pad RPM.

  • PDF

A Study of Thermal Behavior in Ventilated Disk Brake

  • Kim, Jin-Taek
    • KSTLE International Journal
    • /
    • v.7 no.2
    • /
    • pp.56-60
    • /
    • 2006
  • By the increasing amount of vehicles, the increase of car accident served as a major momentum for remind the importance of braking system. The adequate design of a passenger car braking system, which is directly related to the safety of a car, is very important since the safety is an essential design parameter of a car to keep men and car from the damage. The thermal behaviors of the ventilated disk has been investigated based on the air cooling effects during repeat braking operations. In this study, the temperature and velocity fields of 3-D unsteady simulated model are obtained using a software package "FLUENT". The numerical results show that there exits a temperature nonuniformity between the disk faces contacting with pads.

Numerical Internal Flow Analysis of Intake Duct of Waterjet Propulsion (워터제트 추진기 유입관의 내부유동 전산해석)

  • Yun, Hyun-Suk;Park, Warn-Gyu;Chun, Ho-Hwan;Kim, Moon-Chan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.1 s.139
    • /
    • pp.1-9
    • /
    • 2005
  • Waterjet propulsion is widely used to thrust high speed marine vessels in excess of 30-35 knots by virtue of the high propulsive efficiency, good maneuverability, and less cavitation. From the aspect of power loss, approximately $7-9\%$ of the total power is lost in intake duct due to the flow separation, nonuniformity, etc. Thus, detail understanding of flow phenomena occurring within intake duct is essential to reduce the power loss, as well as noise and vibration. The present work solved 30 incompressible RANS equations to provide complicated viscous flow features of intake duct. The numerical results were compared with experiments and good agreements were obtained for three jet velocity ratios.

A MIXED CORE FOR SUPERCRITICAL WATER-COOLED REACTORS

  • Cheng, Xu;Liu, Xiao-Jing;Yang, Yan-Hua
    • Nuclear Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.117-126
    • /
    • 2008
  • In this paper, a new reactor core design is proposed on the basis of a mixed core concept consisting of a thermal zone and a fast zone. The geometric structure of the fuel assembly of the thermal zone is similar to that of a conventional thermal supercritical water-cooled reactor(SCWR) core with two fuel pin rows between the moderator channels. In spite of the counter-current flow mode, the co-current flow mode is used to simplify the design of the reactor core and the fuel assembly. The water temperature at the exit of the thermal zone is much lower than the water temperature at the outlet of the pressure vessel. This lower temperature reduces the maximum cladding temperature of the thermal zone. Furthermore, due to the high velocity of the fast zone, a wider lattice can be used in the fuel assembly and the nonuniformity of the local heat transfer can be minimized. This mixed core, which combines the merits of some existing thermal SCWR cores and fast SCWR cores, is proposed for further detailed analysis.

Characteristic of the Wear and Lubrication using the Friction Froce Measurement in CMP Process (CMP 공정에서 마찰력 측정을 통한 마멸 및 윤활 특성에 관한 연구)

  • Park, Boum-Young;Kim, Hyoung-Jae;Seo, Heon-Deok;Kim, Goo-Youn;Lee, Hyun-Seop;Jeong, Hae-Do
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.231-234
    • /
    • 2004
  • Chemical mechanical polishing(CMP) process was studied in terms of tribology in this paper. CMP performed by the down force and the relative motion of pad and wafer with the slurry is typically tribological system composed of friction, wear and lubrication. The piezoelectric quartz sensor for friction force measurement was installed and the friction force was detected during CMP process. Various coefficient of friction was attained and analyzed with the kind of pad, abrasive and the abrasive concentration. The lubrication regime is also classified with ${\eta}v/p(\eta,\;v\;and\;p;$ the viscosity, relative velocity and pressure). Especially, the co-relation not only between the friction force and the removal per unit distance but also between the coefficient of friction and within-wafer-nonuniformity was estimated.

  • PDF

Effects of 3D contraction on pebble flow uniformity and stagnation in pebble beds

  • Wu, Mengqi;Gui, Nan;Yang, Xingtuan;Tu, Jiyuan;Jiang, Shengyao
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1416-1428
    • /
    • 2021
  • Pebble flow characteristics can be significantly affected by the configuration of pebble bed, especially for HTGR pebble beds. How to achieve a desired uniform flow pattern without stagnation is the top priority for reactor design. Pebbles flows inside some specially designed pebble bed with arc-shaped contraction configurations at the bottom, including both concave-inward and convex-outward shapes are explored based on discrete element method. Flow characteristics including pebble retention, residence-time frequency density, flow uniformity as well as axial velocity are investigated. The results show that the traditionally designed pebble bed with cone-shape bottom is not the most preferred structure with respect to flow pattern for reactor design. By improving the contraction configuration, the flow performance can be significantly enhanced. The flow in the convex-shape configuration featured by uniformity, consistency and less stagnation, is much more desirable for pebble bed design. In contrast, when the shape is from convex-forward to concave-inward, the flow shows more nonuniformity and stagnation in the corner although the average cross-section axial velocity is the largest due to the dominant middle pebbles.

Flow and Heat Transfer Characteristics in a Slot Film Cooling with Various Flow Inlet Conditions (냉각유로방식 변화에 따른 슬롯 막냉각에서의 유동 및 열전달 특성)

  • Ham, Jin-Ki;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.870-879
    • /
    • 2000
  • An experimental investigation is conducted to improve a slot film cooling system which can be used for the cooling of gas turbine combustor liner. The tangential slots are constructed of discrete holes with different injection types which are the parallel, vertical, and combined to the slot lip. The investigation is focused on the coolant supply systems of normal-, parallel-, and counter-flow paths to the mainstream direction. A naphthalene sublimation technique has been employed to measure the local heat/mass transfer coefficients in a slot with various injection types and coolant feeding directions. The velocity distributions at the exit of slot lip for the parallel and vertical injection types are fairly uniform with mild periodical patterns with respect to the hole positions. However, the combined injection type increases the nonuniformity of flow distribution with the period equaling twice that of hole-to-hole pitch due to splitting and merging of the ejected flows. The secondary flow at the lip exit has uniform velocity distributions for the parallel and vertical injection types, which are similar to the results of a two-dimensional slot injection. In the results of local heat/mass transfer coefficient, the best cooling performance inside the slot is obtained with the vertical injection type among the three different injection types due to the effect of jet impingement. The lateral distributions of Sh with the parallel- and counter-flow paths are more uniform than the normal flow path. The averaged Sh with the injection holes are $2{\sim}5$ times higher than that of a smooth two-dimensional slot path.