• 제목/요약/키워드: Nonparametric Methods

검색결과 375건 처리시간 0.026초

Nonparametric Regression with Left-Truncated and Right-Censored Data

  • Park, Jinho
    • Communications for Statistical Applications and Methods
    • /
    • 제6권3호
    • /
    • pp.791-800
    • /
    • 1999
  • Gross and Lai(1996) proposed a new approach for ordinary regression with left-truncated and right-censored (I.t.r.c) data. This paper shows how to apply nonparametric algorithms such as multivariate adaptive regression splines to 1.t.r.c data.

  • PDF

정상 비모수 자기상관 오차항을 갖는 회귀분석에 대한 비교 연구 (A comparison study on regression with stationary nonparametric autoregressive errors)

  • 유규상
    • 응용통계연구
    • /
    • 제29권1호
    • /
    • pp.157-169
    • /
    • 2016
  • 이 논문에서는 비선형 자기회귀 과정을 따르는 오차항을 포함한 회귀모형에서 계수추정법의 비교를 다룬다. 비교를 위해 통상적 최소제곱추정량, 일반화 최소제곱추정량, 모수적 회귀오차 수정법, 비모수적 회귀오차 추정법을 비교하였다. 본 논문에서는 또한 비선형 자기회귀모형의 성질을 전형적인 몇가지 비선형자기회귀 모형을 예를 들어 설명한다. 비교연구의 결과 네 가지 추정량 중에 모든 상황에서 최선인 추정량은 존재하지 않았으나 비모수 회귀오차 수정 방법이 일반적으로 우수한 성능을 보임을 알 수 있다.

반복이 있는 랜덤화 블록 계획법에서 정렬 방법을 이용한 비모수 검정법 (Nonparametric Method Using an Alignment Method in a Randomized Block Design with Replications)

  • 이민희;김동재
    • Communications for Statistical Applications and Methods
    • /
    • 제19권1호
    • /
    • pp.77-84
    • /
    • 2012
  • 반복이 있는 랜덤화 블록 계획법을 검정하는 비모수 검정방법에는 Mack과 Skillings (1980)가 제안한 검정법이 있다. 이 방법은 각 블록의 처리에서 반복된 각 관측값 대신에 반복된 관측값들의 평균을 이용하여 순위를 매기기 때문에 정보의 손실이 있을 수 있다. 본 논문에서는 Hodges와 Lehmann (1962)이 제안한 정렬방법을 이용하여 새로운 비모수 검정법을 제안한다. 또한 모의실험을 통하여 여러 비모수 검정방법들의 검정력을 비교하였다.

Nonparametric M-Estimation for Functional Spatial Data

  • Attouch, Mohammed Kadi;Chouaf, Benamar;Laksaci, Ali
    • Communications for Statistical Applications and Methods
    • /
    • 제19권1호
    • /
    • pp.193-211
    • /
    • 2012
  • This paper deals with robust nonparametric regression analysis when the regressors are functional random fields. More precisely, we consider $Z_i=(X_i,Y_i)$, $i{\in}\mathbb{N}^N$ be a $\mathcal{F}{\times}\mathbb{R}$-valued measurable strictly stationary spatial process, where $\mathcal{F}$ is a semi-metric space and we study the spatial interaction of $X_i$ and $Y_i$ via the robust estimation for the regression function. We propose a family of robust nonparametric estimators for regression function based on the kernel method. The main result of this work is the establishment of the asymptotic normality of these estimators, under some general mixing and small ball probability conditions.

단속적 검사에서 스트레스한계를 가지는 램프스트레스시험을 위한 비모수적 추정 (Nonparametric Estimation for Ramp Stress Tests with Stress Bound under Intermittent Inspection)

  • 이낙영;안웅환
    • 품질경영학회지
    • /
    • 제32권4호
    • /
    • pp.208-219
    • /
    • 2004
  • This paper considers a nonparametric estimation of lifetime distribution for ramp stress tests with stress bound under intermittent inspection. The test items are inspected only at specified time points an⊂1 so the collected observations are grouped data. Under the cumulative exposure model, two nonparametric estimation methods of estimating the lifetime distribution at use condition stress are proposed for the situation which the time transformation function relating stress to lifetime is a type of the inverse power law. Each of items is initially put on test under ramp stress and then survivors are put on test under constant stress, where all failures in the Inspection interval are assumed to occur at the midi)oint or the endpoint of that interval. Two proposed estimators of quantile from grouped data consisting of the number of items failed in each inspection interval are numerically compared with the maximum likelihood estimator(MLE) based on Weibull distribution.

로짓모형의 비모수적 추론의 비교 (Comparison of Some Nonparametric Statistical Inference for Logit Model)

  • 정형철;김대학
    • 응용통계연구
    • /
    • 제15권2호
    • /
    • pp.355-366
    • /
    • 2002
  • 범주형 자료의 구조파악에 주로 이용되는 로짓모형에서 비모수적 방법을 이용한 모수의 신뢰구간추정과 가설검정 등의 통계적 추론에 대하여 살펴보았다. 모수에 대한 통계적 추론에서 정규분포에 근거한 모수적 방법(Wald 방법)보다는 붓스트랩 방법이나 임의순열을 활용한 비모수적 방법이 많이 활용되고 있다. 본 연구에서는 로짓모형의 모수에 대한 비모수적 추론방법으로 붓스트랩(bootstrap)과 임의순열(random permutation)의 두 방법을 고려하고 모의실험을 통하여 가설검정의 검정력과 신뢰구간추정의 포함확률을 비교하였고 사례분석을 다루었다.

비모수와 준모수 혼합모형을 이용한 소지역 추정 (Semiparametric and Nonparametric Mixed Effects Models for Small Area Estimation)

  • 정석오;신기일
    • 응용통계연구
    • /
    • 제26권1호
    • /
    • pp.71-79
    • /
    • 2013
  • 지역 또는 도메인에 작은 크기의 표본이 배정되어 추정의 정도가 나쁜 경우에 사용되는 준모수적 또는 비모수적 소지역 추정법은 최근 많은 연구가 진행되고 있다. 본 논문에서는 커널을 이용한 국소다항 혼합모형 소지역 추정법과 벌점 스플라인을 이용한 혼합모형 소지역 추정법이 연구되었다. 이 두 방법과 소지역추정에 흔히 사용되고 있는 선형 혼합모형을 모의실험을 통해 그 우수성을 비교하였다.

Quantile-based Nonparametric Test for Comparing Two Diagnostic Tests

  • Kim, Young-Min;Song, Hae-Hiang
    • Communications for Statistical Applications and Methods
    • /
    • 제14권3호
    • /
    • pp.609-621
    • /
    • 2007
  • Diagnostic test results, which are approximately normal with a few number of outliers, but non-normal probability distribution, are frequently observed in practice. In the evaluation of two diagnostic tests, Greenhouse and Mantel (1950) proposed a parametric test under the assumption of normality but this test is inappropriate for the above non-normal case. In this paper, we propose a computationally simple nonparametric test that is based on quantile estimators of mean and standard deviation, instead of the moment-based mean and standard deviation as in some parametric tests. Parametric and nonparametric tests are compared with simulations under the assumption of, respectively, normality and non-normality, and under various combinations of the probability distributions for the normal and diseased groups.

Stationary Bootstrapping for the Nonparametric AR-ARCH Model

  • Shin, Dong Wan;Hwang, Eunju
    • Communications for Statistical Applications and Methods
    • /
    • 제22권5호
    • /
    • pp.463-473
    • /
    • 2015
  • We consider a nonparametric AR(1) model with nonparametric ARCH(1) errors. In order to estimate the unknown function of the ARCH part, we apply the stationary bootstrap procedure, which is characterized by geometrically distributed random length of bootstrap blocks and has the advantage of capturing the dependence structure of the original data. The proposed method is composed of four steps: the first step estimates the AR part by a typical kernel smoothing to calculate AR residuals, the second step estimates the ARCH part via the Nadaraya-Watson kernel from the AR residuals to compute ARCH residuals, the third step applies the stationary bootstrap procedure to the ARCH residuals, and the fourth step defines the stationary bootstrapped Nadaraya-Watson estimator for the ARCH function with the stationary bootstrapped residuals. We prove the asymptotic validity of the stationary bootstrap estimator for the unknown ARCH function by showing the same limiting distribution as the Nadaraya-Watson estimator in the second step.

Depth-Based rank test for multivariate two-sample scale problem

  • Digambar Tukaram Shirke;Swapnil Dattatray Khorate
    • Communications for Statistical Applications and Methods
    • /
    • 제30권3호
    • /
    • pp.227-244
    • /
    • 2023
  • In this paper, a depth-based nonparametric test for a multivariate two-sample scale problem is proposed. The proposed test statistic is based on the depth-induced ranks and is thus distribution-free. In this article, the depth values of data points of one sample are calculated with respect to the other sample or distribution and vice versa. A comprehensive simulation study is used to examine the performance of the proposed test for symmetric as well as skewed distributions. Comparison of the proposed test with the existing depth-based nonparametric tests is accomplished through empirical powers over different depth functions. The simulation study admits that the proposed test outperforms existing nonparametric depth-based tests for symmetric and skewed distributions. Finally, an actual life data set is used to demonstrate the applicability of the proposed test.