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Nonparametric Regression
with Left-Truncated and Right-Censored DataV
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Abstract

Gross and Lai (1996) proposed a new approach for ordinary regression with
left-truncated and right-censored (l.tr.c) data. This paper shows how to apply
nonparametric algorithms such as multivariate adaptive regression splines to ltr.c.
data.

1. Introduction

In biostatistical applications we are often interested in survival times of individuals
suffering from a disease. Typically, individuals suffering from a disease are followed and
times of death of those of deceased are recorded. However, in many cases, their survival
times are not completely observed. The most common kind of incomplete information is due to
right censoring in survival data analysis. Recent interest has focused on left-truncated and
right-censored data which arise in prospective studies of a disease. In prospective studies

which begin at chronological time ¢, patients suffering from the disease who are alive at
time ¢, are recruited for the study. However, patients who have died before the beginning of
the study cannot be subjects of this study. Suppose f; and #; denote the time of initial
diagnosis and the time of death, respectively. Let Y= #{,—# and T = {,—#. So Y is a
survival time from the disease. In the above prospective studies, we can observe (Y, T) only
when Y > T (left truncation). Now suppose the study ends at time £, and let C = t,—¢,.
Because of the termination of the study, we can only observe min(Y, C) (right censoring). In
this example, C and 7T are called a right-censoring variable and a left-truncation variable,
respectively. An ordinary right-censored data without left truncation corresponds to the case
T = —oo,

In many applications, there are explanatory variables upon which survival time may depend.

Let X = (X1,X,,....X M)T and Y denote an M-dimensional covariate vector and a survival
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time, respectively. One of the main interests in survival data analysis is the effect of
covariates on the hazard rate (hazard function) A(yx) = AMx)/S(Hix), where A3lx) is the
conditional density function of Y given X=ux, and S(ix) = Pr(Y=y| X=1x). For
right-censored data, Cox (1972) suggested the proportional hazard regression model,
Ax) = Ag(») exp(B7x), and the main interest is in the estimation of the regression
coefficient B based on the partial likelihood. The proportional hazard model was extended to
nonparametric models, A(3x) = Ay(y) exp(7(x)), where non-linear covariate effects 7(x) was

estimated by smoothing splines (O’ Sullivan, 1988) and by regression splines (Sleeper and
Harrington, 1990). The model was further generalized by Kooperberg et al. (1995).

Another approach for the censored data analysis is to use the linear regression model,
Y; = BTX,+ ¢, where the ¢; are independent and identically distributed with mean 0. This

model has been studied by Miller (1976); Buckley and James (1979); Koul et al. (1981); Miller
and Halpern (1982); Zhou (1992), among others. This approach was extended to left-truncated
and right-censored data by Lai and Ying (1994), and Gross and Lai (1996). In this article we
develop nonparametric regression methods for ltr.c. data by using the idea of weighted
estimators with weights determined by jumps in the product-limit estimator, and we illustrate
nonparametric methods with a simulated data set and the Stanford heart transplant data.

2. Nonparametric Regression

Let (X,,Y)), (X,,Y5),... be independent identically distributed random variables. Let C;
and 7, denote a right censoring variable and a left truncation variable, respectively. Suppose
that (Cy, T1), (Cy, Ty),... are independent of the (X, Y;). When the Y; are subject to
right censoring, we observe min(Y;, C;) and the censoring indicator I[(Y,<C;), which is 1 if
we observe uncensored data and ( otherwise. If the Y, are subject to left truncation in
addition to right censoring, we observe (min(Y; C),KY,<C),T;) only when
min(Y,;,C) = T, Let Y;= min(Y,;,C,) and 6; = KY,<C)). Let

(X°, Y, 6° T° i=12,.n with Y'=7T/

denote the observed data. We can regard the observed sample as being generated by a larger
sample of (X, Y, C, T), [=1,2,..m(n), where

m(n) = min{m: gll( Y,=T)=n).

In applications one is often interested in estimating E[A(Y)] for some function #.
However, E[/#(Y)] may not be estimable because of incomplete information about the

distribution of Y due to left truncation and right censoring. For example, suppose that
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truncation and censoring occur at fixed points so that 7;= f# and C;= ¢; for some
constants fy and ¢y, where #;  ¢;. Then we cannot observe the Y; which are outside the
interval [#,c;]. Hence E[R(Y)] is not estimable. The conditional trimmed mean

E[R(Y) | a<Y<b], however, is estimable from the data for some constants « and & such

that a> #; and b < ¢g, as explained below.

Let S(# denote the survival function defined by S(#) = Pr(Y = ), and let

G.(t) = —}h— Z}Pr (T, < t< C)).
Define
= inf{ ¢: liminf ,, .. G,(D > 0},
7= inf{t> 7:S(H=0 or liminf ,, ... G,(H=0}.
Then r and r are the left and right boundaries of the interval within which we can observe

the data under left truncation and right censoring. Lai and Ying (1991) showed that the
conditional distribution

FAy) = P(Y<ylY =02
can be nonparametrically estimated for y < 7 from left-truncated and right-censored data.
Suppose a and b are some constants such that ) r and b< r. Let Fa (y) be the
product-limit estimator of F,(v) = Pr(Y <y| Y > @) given by

F (y) — 0 if y< a
a d .
1 - [1 - = other wise,
I asy sy n
and let S (¥ be an estimator of  the conditional survival function

S,(y) = Pr(Y > y! Y > a) given by

S.» = I [1—ﬂ],

1asy <y n(y
where v () < ¥ @ € =" { ¥, are the distinct uncensored observations; d(; is the

multiplicity of uncensored observations at y(y; # () is the size of the risk set at y(,, ie,

ny = #: T/ < yu < ¥’} and #(A) denotes the number of elements in set A. While

E[2(Y)] may not be estimable because of incomplete information about the distribution of

Y, Gross and Lai (1996) showed that E[A(Y) | a<Y<b], for a continuous function (- ),
can be consistently estimated by

7.0 fah(y) dF,(y) = 7.0 Zx 8 la< Y. "<b) W( Y7 W 70

under the condition that
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liminf ,, .= 3% Pr{T, < min(¥,C)} > 0.

When the (C; T;) are iid, note that the above condition is reduced to the assumption
Pr{T < min(Y,C)} > 0, that is, a random sample is observable with a positive probability.
Consider a nonparametric regression model E(Y | X) = @(X) for some function ¢( -) in
L% As mentioned before, ¢( +) may not be estimable because of incomplete information.

The best approximation to the regression function ¢@( ) in L? at the presence of left
truncation and right censoring can be defined as

" = argmin , . E[(Y— (X))’ | a< Y<8).
Suppose that an estimated regression function is chosen from a function space F , based on

a random sample of size #. The best approximation to the regression function ¢( ) in F,

can be defined as
¢, = argmin . 3 E[(Y—g(X)*| a<Y<b].

Using the argument in Gross and Laji (1996), it can be shown that

3 67 as PO TP - g X T

F ) i 7 1)

is a consistent estimator of E[(Y—g(X))?| a<Y<b] Then, a nonparametric regression

estimator /g\on in F, can be defined as

o § ?'0)
o __ o2 Pal Y1/
Ry 200 [ (as PSH0 V- s X

Under certain conditions, Park (1995) showed that ?0,, converges to ¢  with the optimal rate

P, = argmin ge 3,

by using the space of tensor products of B-splines as % ,.

For the case of complete data (without censoring and truncation), several nonparametric
algorithms including MARS (multivariate adaptive regression splines) (Friedman, 1991) have
been developed during the last two decades (see Hardle, 1990). For left-truncated and
right-censored data, we can use the nonparametric regression algorithms using the weight

Fa(b) 0; I(a< ?; <b) #( ?:'0)

using the consistent estimating equation (1).

n (X,‘o, ?;O)

In this article we assume that the Y, are independent and identically distributed. In
regression models, it is a reasonable assumption if the covariates X; are random variables

which are independent and identically distributed. However, the assumption that the Y, are

identically distributed does not hold in general, as in the case of nonrandom covariates.
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Another assumption is that the (C;, T,) are independent of (X, Y,). This assumption may
not hold in some cases. Gross and Lai (1996) suggested the following procedure for the case
that the assumptions do not hold. First, partition the range of X into several subregions

Uy, Us, ..., Uk, thereby stratifying the data into K subgroups corresponding to X values.

When the range of X in each subregion is sufficiently small so that X values do not change

much within each group, the Y; can be regarded approximately as having the identical
distribution given X, €U, and the (C;, T;) are conditionally independent of (X;, Y))
given X; € U,. Since the necessary assumptions to prove that (1) is a consistent estimator of
E[(Y—g(X))?| a<Y<b] are approximately satisfied within each group, we can use (1)
but replacing S,( Y:*)/ [ EF, (&) - #( ¥)] by

e 3,909

no PP PCr)

is the number of observations such that X,° € U, and S, (k)( 2), # B,

where #n )

and F, (k)(b) are the same as S,(-), #(-), and F,(b) in (1) but calculated using
the observed data within each group. The motivation of the above weight is following. We

may assume that the Y, are approximately independent and identically distributed and the
(C;, T;) are independent of (X;, Y,) within each group. Therefore, by the same argument
which prove that (1) is a consistent estimator of E [(Y- g(X)? | a<Y<b1], it follows that
gd (k) ( Yvio)

T F (k) # 00T

is a consistent estimator of E [(Y—g(X))? | a<Y<b, X = U,]. Since there are #n®

ﬁ 8° K X'eU) Kas 7<) ( ¥i—g( X))

observations in each group, the estimator of E [(Y—g(X))* | a<Y<b] is given by

ga (k)( i)«io)

4 (k)( i)'io)

by using weight 7 ®*/n on the estimator of E [(Y— g(X))? | a<Y<b, X € U,]. This idea

of stratification was also used in Leurgans (1987) and Fygenson and Zhou (1994) for censored
data.

glm i 6 I( X: EUk) I(a< ? <b) ( ?O_g(XO))Z

3. Example

In this section, we present the results of applying MARS to a simulated data set and the
Stanford heart transplant data. We fit the MARS model by using the Fortran program
developed by Friedman.



796  Jinho Park

Example 1 The simulated data are generated by
Yl' = ¢ (X 11'1 XZZ')+81'9

where
2%, —

o(xy,29) = 1.3356(1.5(1-x)+e 1sin(37r(9c1 - 0.6)2)+eB(xz_O'S)sin(47r(x2-0.9)2)),
Xy and X, ~ Uniform[0,1], &, ~ MO0,0.759, Ci ~ 2, T, ~ £

First we generate a sample of 200 vectors (X, Y;, C;, T,). From 200 vectors, the observable

sample ( X/, Y:°, C°, T,°) is then produced. In the sample generated, #=143 so that
28.5% are left truncated. Among the observed data, 33% are right censored. For the

observed data, we apply the MARS program to estimate the regression function @(x),x,). In

this example, a and b are chosen so that 95% of the observed data are included in the
interval [a, b]. Figure 1 shows (a) the true regression function, (b) the observed data, and
(c) and (d) the estimated regression functions from the observed data when the smoothing
parameter (See Friedman, 1991) d=3 and when d=1. Compared with the regression
function (a), the smoothing parameter d=3 in (c) seems to have caused oversmoothing in
the estimated regression function, and the choice of d=1 in (d) seems to give a better
estimate of (a). Note that the fitted surface gets smoother as the smoothing parameter
becomes larger.

Example 2 Stanford heart transplant data.

In the Stanford heart transplant program 184 patients had received heart transplants from
October 1967 to February 1980. The data consist of their survival times (days), age, and
mismatch scores that measure the degree of tissue compatibility between the initial donor and
recipient hearts. For 27 of the 184 patients, the mismatch scores are missing. The analysis of
the data is based on the remaining 157 patients, and 55 are censored of 157 cases. As pointed
out in Leurgans (1987), the simple random censorship model in which the censoring times are
assumed ii.d. may not be appropriate for this data. One way to avoid the difficulty is to use
stratification. Following Leurgans (1987), the data are stratified into 4 groups using age as a
criterion of stratification; less than 30, 30-39, 40-49, and 50 or older. We apply the MARS
algorithm to the data. Parts (a) and (b) of Figure 2 show nonparametric regression on age
and on mismatch score, separately. They show that age has a relatively constant effect up to
a certain point and survival time decreases with age after that point. Figure 2 (¢) shows the
estimated regression function using age and mismatch score together, and Figure 2 (d) is the
same estimated function but seen from a different point. Figure 2 (c) and (d) suggest the
following interpretation: when the mismatch score is close to 0, that is, when tissues of the
initial donor and the recipient are well matched, age has almost no effect on survival time. As
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the mismatch score becomes larger, age has a more (negative) effect on survival time. As a
patient gets older, the mismatch score has a more (negative) effect on survival time.

The Stanford heart transplant data have been studied by several authors and the results of
analyses are well summarized in Leurgans (1987) and Zhou (1992). When age and the
mismatch score were used as covariates in linear model without interaction terms, the results
were inconsistent among several methods as shown in Leurgans (1987). In the model with age
and the square of age as covariates, the fitted line showed that survival time increases up to
approximately age 30 but it decreases after that point, while Figure 2 shows that survival
time remains constant up to age 30. It seems difficult to argue which result is more
reasonable since there are not many patients before age 30 (23 observations out of 157
patients). In fact we had similar results if we used the smoothing parameter d=0.01 in
MARS.
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Figure 1. Nonparametric Regression using MARS (a) original model; (b) l.tr.c.
data; (c) reconstructed model ( d=3); and (d) reconstructed model ( d=1).
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Figure 2. Stanford heart transplant data - Nonparametric regression using MAR

(d=0.1) (a) on age; (b) on mismatch score; (¢) on age and mismatch score;

and (d) another view of (c)




