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Abstract
We consider a nonparametric AR(1) model with nonparametric ARCH(1) errors. In order to estimate the

unknown function of the ARCH part, we apply the stationary bootstrap procedure, which is characterized by
geometrically distributed random length of bootstrap blocks and has the advantage of capturing the dependence
structure of the original data. The proposed method is composed of four steps: the first step estimates the AR
part by a typical kernel smoothing to calculate AR residuals, the second step estimates the ARCH part via the
Nadaraya-Watson kernel from the AR residuals to compute ARCH residuals, the third step applies the stationary
bootstrap procedure to the ARCH residuals, and the fourth step defines the stationary bootstrapped Nadaraya-
Watson estimator for the ARCH function with the stationary bootstrapped residuals. We prove the asymptotic
validity of the stationary bootstrap estimator for the unknown ARCH function by showing the same limiting
distribution as the Nadaraya-Watson estimator in the second step.

Keywords: stationary bootstrap, ARCH, nonparametric regression, consistency

1. Introduction

Diverse models have been considered for trends and volatilities of the time series to analyze financial
or economic time series. A simple model is the autoregressive-generalized autoregressive conditional
heteroscedastic (AR-GARCH) model. Among many variations of the AR-GARCH models, some
people considered nonparametric trend and volatility models, i.e., nonparametric AR-ARCH mod-
els, for which estimations and large sample theories are available in Robinson (1983), Hardle and
Tsybakov (1997), Bossaerts et al. (1996) and Hafner (1998).

Bootstrap methods are applied to improve accuracies of finite sample distributions of estimators
or test statistics over those based on large sample theories. For trend-volatility models, Franke et
al. (2002, 2004) considered the i.i.d. bootstrapping for kernel smoothing and volatility function in
nonparametric first-order AR time series model with conditionally heteroscedastic errors. Goncalves
and Kilian (2007) investigated wild bootstrap inference for AR(∞) processes with conditional het-
eroskedasticity in error, and Kreiss et al. (2008) studied bootstrap tests for nonparametric regres-
sion models and applied the results to ARCH models. Shimizu (2013) applied the residual and
wild bootstrap to the quasi-maximum likelihood estimators for parametric ARMA-GARCH model
while Shimizu (2014) dealt with the residual and wild bootstrap for nonparametric AR-nonparametric
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ARCH model. Shimizu (2013) demonstrated the cases where bootstrap does not work for het-
eroscedastic time series models.

Diverse dependent structures are imposed on the observation by both trend and volatility for data
from trend-volatility models. Therefore, block bootstrapping may be a better choice because the boot-
strap sampling should capture the dependence structure of the original data in order for the bootstrap
sample to have the same dependence structure as the observation, instead of i.i.d. bootstrapping and
wild bootstrapping. For example, volatility clustering features prevalent in log-returns of financial
assets such as stock prices and foreign exchange rates and in macroeconomic variables are reserved
in block bootstrap samples but not in i.i.d bootstrap samples. Kreiss and Paparoditis (2011) and refer-
ences provide a review of the bootstrap methods for dependent data.

We apply the stationary bootstrap method in this work as a bootstrap applicability for the ARCH
model. The stationary bootstrap proposed by Politis and Romano (1994) is characterized by resam-
pling blocks of geometrically distributed random length. As recent stationary bootstrap works, we
mention Swensen (2003), Paparoditis and Politis (2005), Parker et al. (2006), and Shin and Hwang
(2013) for inference in nonstationary time series such as unit root tests and cointegration analysis; and
Hwang and Shin (2011) and Hwang and Shin (2013a, 2013b) for realized volatilities of log-returns of
financial assets.

In this paper, the nonparametric ARCH regression model is considered and studied for asymptotic
validity by means of the stationary bootstrap. We first estimate the AR part by a typical kernel smooth-
ing and to calculate AR residuals in the nonparametric AR(1)-nonparametric ARCH(1) model, the
second step estimates the ARCH part via the Nadaraya-Watson kernel from the AR residuals to com-
pute ARCH residuals, the third step applies the stationary bootstrap procedure to the ARCH residuals
and the stationary bootstrapped Nadaraya-Watson estimator in the final step is defined by stationary
bootstrapped residuals. We prove asymptotic validity of the stationary bootstrap estimator for the un-
known ARCH function by showing that it has the same limiting distribution as the Nadaraya-Watson
estimator.

Our result is an extension of Shimizu (2014), who showed the weak consistency of the Nadaraya-
Watson estimator for the ARCH part as well as proposed the residual and wild bootstrap estimators in
the nonparametric AR-nonparametric ARCH model. However, Shimizu (2014)’s bootstrap methods
are involved with i.i.d. sample in generating bootstrap processes, which may not preserve the depen-
dence structure of the original data versus block bootstrap methods (such as stationary bootstrap) that
capture the dependence structure.

This paper is organized as follows. In Section 2, the model, the assumptions and the existing
theories are stated. In Section 3, the main result is presented along with description of the stationary
bootstrap procedure. The conclusion is given in Section 4. Proof is reported in Appendix.

2. Model, Assumptions and Existing Theories

Let {Xt} follow a nonparametric AR(1) model with nonparametric ARCH(1) errors:

Xt = m(Xt−1) + εt and εt = σ(εt−1)ηt, (2.1)

where {ηt} is a sequence of i.i.d. random variables with mean 0, variance 1 and E[η4
t ] =: κ < ∞, m(·)

and σ(·) are unknown smooth functions. Our main interest is estimating σ(·). The ARCH(1) error in
(2.1) can be expressed as

ε2
t = σ

2(εt−1) +
√
κ − 1σ2(εt−1)ut, (2.2)
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where

ut =
η2

t − 1
√
κ − 1

with E[ut] = 0, E[u2
t ] = 1. In the virtual case that {εt : t = 0, 1, . . . , n} are known, the Nadaraya-

Watson (NW) estimator of σ2(·) with bandwidth h and kernel function Kh(·) is given by

σ̂2
h(e) =

∑n
i=1 ε

2
i Kh(e − εi−1)∑n

j=1 Kh(e − ε j−1)
.

Asymptotic normality of σ̂2
h(e) was developed by Franke et al. (2002).

In case that {εt : t = 0, 1, . . . , n} are unknown, Shimizu (2014) considered a two-step estimation
method. Assume a data set {X1, X2, . . . , Xn} is available. First, m(·) in the AR part of the model (2.1)
is estimated by the typical kernel smoothing with bandwidth k. The kernel smoothing estimator is
denoted by m̂k(·):

m̂k(x) =
∑n

i=1 XiKk(x − Xi−1)∑n
j=1 Kk(x − X j−1)

.

Second, the residuals ε̂t := Xt − m̂k(Xt−1) are used to estimate the ARCH part and provide the NW
estimator of σ2(·):

σ̃2
h(e) =

∑n
i=1 ε̂

2
i Kh(e − ε̂i−1)∑n

j=1 Kh(e − ε̂ j−1)
.

Asymptotic normality of σ̃2
h(e) was given by Shimizu (2014), under the following conditions

(A1)–(A8) below.

(A1): The distribution of the i.i.d. innovations ηt possesses a Lebesgue density pη, which satisfies
infe∈C pη(e) > 0 for all compact sets C.

(A2): σ and σ−1 are bounded on compact sets and lim sup|e|→∞ E|σ(e)η1|/|e| < 1.

Conditions in (A1) and (A2) ensure that the process {εt} is stationary and geometrically ergodic
and its stationary distribution π possesses a strictly positive Lebesgue density denoted by p. From
(2.1) we obtain

p(e) =
∫
R

1
σ(u)

pη

(
e

σ(u)

)
p(u)du.

(A3): σ is twice continuously differentiable and σ′, σ′′ are bounded. There exists σ0 > 0 such that
σ(e) ≥ σ0 for all e ∈ R.

(A4): pη is twice continuously differentiable. pη, p′η and p′′η are bounded and supe∈R |ep′η(e)| < ∞.

(A5): The bandwidth h of kernel estimation for the ARCH part satisfies h→ 0, nh4 → ∞, nh5 → B2

for some B as n→ ∞.
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(A6): The kernel function K for the ARCH part has compact support [−1, 1]. K is symmetric, non-
negative and three times continuously differentiable with K(1) = K′(1) = 0 and

∫
K(u)du = 1.

For the AR part we need the following assumptions on the kernel smoothing estimator m̂k(·) with
the bandwidth k.

(A7): supe∈D |m̂k(e) − m(e)| = Op

( √
log n/(nk)

)
where D denotes any compact subset of R.

(A8): k → 0 and k ∼ n−γ for some 0 < γ < min{1/5, 1 − 8α} with some 0 < α ≤ 1/9 as n→ ∞.

The following results are asymptotic normalities of σ̂2
h(e) and σ̃2

h(e) by Franke et al. (2002) and by
Shimizu (2014), respectively.

Theorem 1. (Franke et al., 2002) Assume (A1)–(A8) above. For all e ∈ R, we have

√
nh

(
σ̂2

h(e) − σ2(e)
) d−→ N

(
b(e)
p(e)

,
v2(e)
p2(e)

)
as n→ ∞,

where

b(e) = B
(
p′(e)

(
σ2

)′
(e) +

1
2

p(e)
(
σ2

)′′
(e)

) ∫
u2K(u)du,

v2(e) = (κ − 1)p(e)σ4(e)
∫

K2(u)du.

Theorem 2. (Shimizu, 2014) Assume (A1)–(A8) above. For all e ∈ R, we have

√
nh

(
σ̃2

h(e) − σ2(e)
) d−→ N

(
b(e)
p(e)

,
v2(e)
p2(e)

)
as n→ ∞.

3. Stationary Bootstrap

In this section, we apply the stationary bootstrap method to define a bootstrap estimator of σ2(·) and
present the asymptotic validity of the stationary bootstrap.

3.1. Stationary bootstrap procedure

The stationary bootstrapping will be applied to a residual set {ũ1, . . . , ũn}, defined in the next sub-
section. For notational simplicity, we use ut for ũt in this subsection. We describe how to construct
stationary bootstrap sample u∗1, . . . , u

∗
n from u1, . . . , un. First we define a new time series {uni : i ≥ 1}

by a periodic extension of the observed data set as follows. For each i ≥ 1, define uni := u j where j is
such that i = qn + j for some q. The sequence {uni : i ≥ 1} is obtained by wrapping the data u1, . . . , un

around a circle, and re-labelling them as un1, un2, . . .. Next, for a positive integer ℓ, define the blocks
B(i, ℓ), i ≥ 1 as B(i, ℓ) = {uni, . . . , un(i+ℓ−1)} consisting of ℓ observations starting from uni. Bootstrap
observations under the stationary bootstrap method are obtained by selecting a random number of
blocks from collection {B(i, ℓ) : i ≥ 1, ℓ ≥ 1}. To do this, we generate random variables I1, . . . , In

and L1, . . . , Ln as follows: (i) I1, . . . , In are i.i.d. discrete uniform on {1, . . . , n} : P(I1 = i) = 1/n,
for i = 1, . . . , n, (ii) L1, . . . , Ln are i.i.d. random variables having the geometric distribution with a
parameter ρ ∈ (0, 1) : P(L1 = ℓ) = ρ(1 − ρ)ℓ−1 for ℓ = 1, 2, . . ., where ρ = ρ(n) depends on the sample
size n, and (iii) the collections {I1, . . . , In} and {L1, . . . , Ln} are independent. Now, a pseudo-time series
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u∗1, . . . , u
∗
n is generated in the following way. Let τ = inf{ k ≥ 1 : L1 + · · · + Lk ≥ n}. Then select

τ blocks B(I1, L1), . . . , B(Iτ, Lτ). Note that there are L1 + · · · + Lτ elements in the resampled blocks
B(I1, L1), . . . , B(Iτ, Lτ). Arranging these elements in a series and deleting the last L1 + · · · + Lτ − n
elements, we obtain the bootstrap observations u∗1, . . . , u

∗
n.

3.2. Stationary bootstrap NW estimator

The stationary bootstrap procedure is applied to estimate σ2(·). In order to define the stationary
bootstrap estimator of σ2(·), we follow four steps:

Step 1: Calculate residuals ε̂t with the kernel smoothing estimator m̂k(x);

ε̂t = Xt − m̂k (Xt−1) , t = 1, 2, . . . , n,

and compute the NW estimator σ̃2
g(·) with a bandwidth g:

σ̃2
g(e) =

∑n
i=1 ε̂

2
i Kg (e − ε̂i−1)∑n

j=1 Kg

(
e − ε̂ j−1

) .
Step 2: Compute

η̂t =
ε̂t

σ̃g(ε̂t−1)
, κ̂ =

1
n

n∑
t=1

η̂4
t

and

ût =
η̂2

t − 1
√
κ̂ − 1

,

and standardize ût to get

ũt =
ût − µ̂
σ̂

with µ̂ =
1
n

n∑
t=1

ût, σ̂
2 =

1
n

n∑
t=1

(ût − µ̂)2.

Step 3: Apply the stationary bootstrap procedure to {ũt : t = 1, 2, . . . , n} to generate the stationary
bootstrap sample {ũ∗t : t = 1, 2, . . . , n}. Note that

ũ∗t =
1
σ̂

[
η̂∗2t − 1
√
κ̂ − 1

− µ̂
]
,

where {η̂∗2t } is the stationary bootstrap sample generated from {η̂2
t }.

Step 4: Following (2.2), compute

ε̂∗2t = σ̃
2
g (ε̂t−1) +

√
κ̂ − 1 σ̃2

g (ε̂t−1) ũ∗t , t = 1, 2, . . . , n,

and the NW estimator of the stationary bootstrap version

σ̃∗2h (e) =
∑n

i=1 ε̂
∗2
i Kh(e − ε̂i−1)∑n

j=1 Kh(e − ε̂ j−1)
.
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3.3. Asymptotic validity

Now we present the asymptotic validity of the stationary bootstrap NW estimator σ̃∗ 2
h (·). In addition

to (A1)–(A8), two additional conditions are needed for the consistency of the stationary bootstrap.

(A9): The bandwidth g of kernel estimator σ̃2
g(·) in Step 1 satisfies g ∼ n−α for some 0 < α ≤ 1/9 as

n→ ∞.

(A10): The parameter ρ of the geometrically distributed length of the stationary bootstrap block sat-
isfies nρh1+2/δ → ∞ for some δ > 0.

Theorem 3. Assume (A1)–(A10) above. For all e ∈ R, we have, as n→ ∞

sup
x∈R

∣∣∣∣P∗ (√nh
[
σ̃∗ 2

h (e) − σ̃2
g(e)

]
≤ x

)
− P

(√
nh

[
σ̃2

h(e) − σ2(e)
]
≤ x

)∣∣∣∣ p
−→ 0.

Remark 1. An alternative way to use the stationary bootstrap procedure is that we apply the proce-
dure directly to the residuals {ε̂t : t = 1, . . . , n} in Step 1 to get the bootstrap sample {ε̂∗t : t = 1, . . . , n}.
The stationary bootstrap estimator of σ2(·) can be defined as

σ̂∗ 2
h (e) =

∑n
i=1 ε̂

∗ 2
i Kh

(
e − ε̂∗i−1

)
∑n

j=1 Kh

(
e − ε̂∗j−1

)
just as in the stationary bootstrap kernel estimator of nonlinear autoregressive model in Equation (4)
of Hwang and Shin (2011). The consistency result of σ̂∗ 2

h (e) can be shown by the similar arguments
to those in the proof of Hwang and Shin (2011).

4. Conclusion

We developed a stationary bootstrapping procedure for a nonparametric NW estimator in AR-ARCH
model. Large sample validity of the proposed bootstrap procedure is proved in a rigorous manner.
The asymptotic validity will enable us to construct statistical inference methods such as confidence
intervals and hypothesis testing. It would be worth to compare the bootstrap methods with other
non-bootstrap methods in a Monte-Carlo experiment. This issue may be a topic for future studies.

Appendix:

Proof of Theorem 3: According to Theorem 2, it suffices to show that
√

nh[σ̃∗ 2
h (e) − σ̃2

g(e)] has the
same asymptotic normal distribution as that in Theorem 2.

Letting Kh,i = Kh(e − ε̂i−1) for just notational simplicity, we write

√
nh

[
σ̃∗ 2

h (e) − σ̃2
g(e)

]
=

√
h
n
∑n

i=1 Kh,i
√
κ̂ − 1 σ̃2

g (ε̂i−1) ũ∗i
1
n
∑n

j=1 Kh, j
+

√
h
n
∑n

i=1 Kh,i

(
σ̃2

g (ε̂i−1) − σ̃2
g(e)

)
1
n
∑n

j=1 Kh, j
. (A.1)

The following two convergence results in (A.2) were given by Shimizu (2014); (see respectively (ii)
in the proof of Theorem 2.2 of Shimizu (2014, p.65) and (ii) in the proof of Theorem 3.1 of Shimizu
(2014, p.67)):

1
n

n∑
j=1

Kh, j
p
−→ p(e) and

√
h
n

n∑
i=1

Kh,i

(
σ̃2

g(ε̂i−1) − σ̃2
g(e)

) p
−→ b(e). (A.2)
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Thus we may show that the numerator of the first term in (A.1), which is the stationary bootstrap part,
converges in distribution conditionally given {Xt} to N(0, v2(e)). We observe the numerator of the first
term in (A.1).

Let

ϕ∗i (e) =

√
h
n

Kh,i
√
κ̂ − 1 σ̃2

g(ε̂i−1)ũ∗i , i = 1, 2, . . . , n.

Since

µ̂ =
1
n

n∑
i=1

[
1

√
κ̂ − 1

(
η̂2

i − 1
)]
,

ϕ∗i (e) =
1
σ̂

√
h
n

Kh,i σ̃
2
g(ε̂i−1)

[
η̂2∗

i − 1 − µ̂
√
κ̂ − 1

]
=

1
σ̂

√
h
n

Kh,i σ̃
2
g(ε̂i−1)

[
η̂2∗

i − η̄2
]
,

where η̄2 = (1/n)
∑n

i=1 η̂
2
i . Note that E∗[ϕ∗i (e)] = 0.

It will be shown that
∑n

i=1 ϕ
∗
i (e)

d∗−→ N(0, v2(e)). We have

Var∗
 n∑

i=1

ϕ∗i (e)

 = n

R∗(0) + 2
n−1∑
i=1

(
1 − i

n

)
R∗(i)

 ,
where R∗(i) = Cov∗(ϕ∗1(e), ϕ∗1+i(e)), which is equal to

1
σ̂2

h
n

Kh,1Kh,1+iσ̃
2
g (ε̂0) σ̃2

g(ε̂i)E∗
[(
η̂2∗

1 − η̄2
) (
η̂2∗

1+i − η̄2
)]
.

Observe

E∗
[(
η̂2∗

1 − η̄2
) (
η̂2∗

1+i − η̄2
)]

= E∗
[(
η̂2∗

1 − η̄2
) (
η̂2∗

1+i − η̄2
) ∣∣∣L1 > i

]
P(L1 > i) + E∗

[(
η̂2∗

1 − η̄2
) (
η̂2∗

1+i − η̄2
) ∣∣∣L1 ≤ i

]
P(L1 ≤ i)

= (1 − ρ)i
[
d̂n(i) + d̂n(n − i)

]
,

where d̂n(i) = (1/n)
∑n−i

j=1(η̂2
j − η̄2)(η̂2

j+i − η̄2).
Then, letting K̂(i) = Kh,1Kh,1+iσ̃

2
g(ε̂0)σ̃2

g(ε̂i),

R∗(i) =
1
σ̂2

h
n

K̂(i)(1 − ρ)i
[
d̂n(i) + d̂n(n − i)

]
and thus

n−1∑
i=1

(
1 − i

n

)
R∗(i) =

1
σ̂2

h
n

n−1∑
i=1

K̂(i)bn(i)d̂n(i),

where bn(i) = {1 − i/(n − 1)}(1 − ρ)i + {i/(n − 1)}(1 − ρ)n−1−i.
Let

ϕi(e) =
1
σ̂

√
h
n

Kh,i σ̃
2
g(ε̂i−1)

[
η̂2

i − η̄2
]
.
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Therefore Var(
∑n

i=1 ϕi(e)) = Var(
∑n

i=1 1/σ̂
√

h/n
∑n

i=1 Kh,i ε̂
2
i ) → v2(e) by Theorem 2 and its proof in

Shimizu (2014). We can write limn→∞ Var(
∑n

i=1 ϕi(e)) = R(0) + 2
∑∞

i=1 R(i) with

R(i) = Cov (ϕ1(e), ϕ1+i(e)) =
1
σ̂2

h
n

Cov
(
Kh,1 σ̃

2
g(ε̂0)

[
η̂2

1 − η̄2
]
,Kh,1+i σ̃

2
g(ε̂i)

[
η̂2

1+i − η̄2
])
.

Using the same arguments as that in Politis and Romano (1994) or Hwang and Shin (2012), the
following two convergences in probability can be shown:

n|R∗(0) − R(0)| = h
σ̂2

∣∣∣∣∣∣∣∣1n
n∑

j=1

(
Kh,1σ̃

2
g(ε̂0)

[
η̂2

j − η̄2
])2 − Var

(
Kh,1σ̃

2
g(ε̂0)

[
η̂2

1 − η̄2
])∣∣∣∣∣∣∣∣

≤ h
σ̂2

∣∣∣∣∣∣∣∣1n
n∑

j=1

(
Kh,1σ̃

2
g(ε̂0)

[
η̂2

j − η̄2
])2 − 1

n

n∑
j=1

(
Kh, jσ̃

2
g(ε̂ j−1)

[
η̂2

j − η̄2
])2

∣∣∣∣∣∣∣∣
+

h
σ̂2

∣∣∣∣∣∣∣∣1n
n∑

j=1

(
Kh, jσ̃

2
g(ε̂ j−1)

[
η̂2

j − η̄2
])2 − Var

(
Kh,1σ̃

2
g(ε̂0)

[
η̂2

1 − η̄2
])∣∣∣∣∣∣∣∣ p
−→ 0,

and

n

∣∣∣∣∣∣∣
n−1∑
i=1

(
1 − i

n

)
R∗(i) −

∞∑
i=1

R(i)

∣∣∣∣∣∣∣
≤ h
σ̂2

∣∣∣∣∣∣∣∣1n
n−1∑
i=1

bn(i)


n−i∑
j=1

Kh,1 σ̃
2
g(ε̂0)

[
η̂2

j − η̄2
]

Kh,1+iσ̃
2
g(ε̂i)

[
η̂2

j+i − η̄2
]

−
n−i∑
j=1

Kh, j σ̃
2
g(ε̂ j−1)

[
η̂2

j − η̄2
]

Kh, j+iσ̃
2
g(ε̂ j+i−1)

[
η̂2

j+i − η̄2
]

∣∣∣∣∣∣∣∣
+

h
σ̂2

∣∣∣∣∣∣∣∣1n
n−1∑
i=1

bn(i)


n−i∑
j=1

Kh, j σ̃
2
g(ε̂ j−1)

[
η̂2

j − η̄2
]

Kh, j+iσ̃
2
g(ε̂ j+i−1)

[
η̂2

j+i − η̄2
]
−CK(i)


∣∣∣∣∣∣∣∣

+
h
σ̂2

∣∣∣∣∣∣∣1n
n−1∑
i=1

bn(i)CK(i) −
n∑

i=1

CK(i)

∣∣∣∣∣∣∣ p
−→ 0

where CK(i) = Cov(Kh,1 σ̃
2
g(ε̂0)[η̂2

1 − η̄2], Kh,1+i σ̃
2
g(ε̂i)[η̂2

1+i − η̄2]). Therefore we conclude that Var∗

(
∑n

i=1 ϕ
∗
i (e))

p
−→ v2(e).

Now we establish the asymptotic normality of
∑n

i=1 ϕ
∗
i (e). Let Mk = L1 + · · · + Lk for k =

1, . . . , τ. Note that Mτ−1 < n ≤ Mτ, and
∑n

i=1 ϕ
∗
i (e) =

∑Mτ−1
i=1 ϕ∗i (e) +

∑n
i=Mτ−1+1 ϕ

∗
i (e). It is clear

that
∑n

i=Mτ−1+1 ϕ
∗
i (e)

p∗
−→ 0 as n→ ∞ because both

∑Mτ−1
i=1 ϕ∗i (e) and

∑Mτ

i=1 ϕ
∗
i (e) have the same limit.

We consider
∑Mτ−1

i=1 ϕ∗i (e). Let ξ∗n,1 =
∑M1

i=1 ϕ
∗
i (e) and for k = 2, . . . , τ−1, ξ∗n,k =

∑Mk
i=Mk−1+1 ϕ

∗
i (e). Then∑Mτ−1

i=1 ϕ∗i (e) =
∑τ−1

k=1 ξ
∗
n,k, and {ξ∗n,1, . . . , ξ∗n,τ−1} is a triangular array of independent random variables

because of independence of L1, L2, . . . , Lτ−1. Lyapunov’s central limit theorem is adiquate to show
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that, for some δ > 0

1
v2+δ
ξ,τ

τ−1∑
k=1

E∗
[∣∣∣ξ∗n,k∣∣∣2+δ] p

−→ 0 as n→ ∞ (τ→ ∞), (A.3)

where vξ,τ = (Var∗[
∑τ−1

k=1 ξ
∗
n,k])1/2. It is obvious that v2

ξ,τ

p
−→ v2(e). For k = 1, . . . , τ − 1 with M0 = 0,

we observe

E∗
[∣∣∣ξ∗n,k∣∣∣2+δ] = E∗


∣∣∣∣∣∣∣

Mk∑
i=Mk−1+1

ϕ∗i (e)

∣∣∣∣∣∣∣
2+δ = E∗


∣∣∣∣∣∣∣

Mk∑
i=Mk−1+1

1
σ̂

√
h
n

Kh,i σ̃
2
g(ε̂i−1)

[
η̂2∗

i − η̄2
]∣∣∣∣∣∣∣

2+δ
which has the same distribution as

E∗

∣∣∣∣∣∣∣
min{Lk ,n}∑

i=1

1
σ̂

√
h
n

Kh,i σ̃
2
g(ε̂i−1)

[
η̂2∗

i − η̄2
]∣∣∣∣∣∣∣

2+δ
= E

E∗

∣∣∣∣∣∣∣
min{Lk ,n}∑

i=1

1
σ̂

√
h
n

Kh,i σ̃
2
g(ε̂i−1)

[
η̂2∗

i − η̄2
]∣∣∣∣∣∣∣

2+δ∣∣∣∣∣∣∣∣ Lk




=

∞∑
ℓ=1

ρ(1 − ρ)ℓ−1E∗

∣∣∣∣∣∣∣
min{ℓ,n}∑

i=1

1
σ̂

√
h
n

Kh,i σ̃
2
g(ε̂i−1)

[
η̂2∗

i − η̄2
]∣∣∣∣∣∣∣

2+δ
≤ 1
σ̂2+δ

h1+ δ
2

n1+ δ
2

(
1

h2+δ max
u∈R

K2+δ(u)
) ∞∑
ℓ=1

ρ(1 − ρ)ℓ−1E∗

∣∣∣∣∣∣∣
min{ℓ,n}∑

i=1

σ̃2
g(ε̂i−1)

[
η̂2∗

i − η̄2
]∣∣∣∣∣∣∣

2+δ .
Thus we consider the order of

∞∑
ℓ=1

ρ(1 − ρ)ℓ−1E∗

∣∣∣∣∣∣∣
min{ℓ,n}∑

i=1

σ̃2
g(ε̂i−1)

[
η̂2∗

i − η̄2
]∣∣∣∣∣∣∣

2+δ ,
which is equal to

n∑
ℓ=1

ρ(1−ρ)ℓ−1E∗

∣∣∣∣∣∣∣
ℓ∑

i=1

σ̃2
g(ε̂i−1)

[
η̂2∗

i − η̄2
]∣∣∣∣∣∣∣

2+δ+ ∞∑
ℓ=n+1

ρ(1−ρ)ℓ−1E∗

∣∣∣∣∣∣∣

n∑
i=1

σ̃2
g(ε̂i−1)

[
η̂2∗

i − η̄2
]∣∣∣∣∣∣∣

2+δ . (A.4)

Since σ̃2
g(·) is bounded a.s., we have

E∗

∣∣∣∣∣∣∣
ℓ∑

i=1

σ̃2
g(ε̂i−1)

[
η̂2∗

i − η̄2
]∣∣∣∣∣∣∣

2+δ ≤ M · E∗

∣∣∣∣∣∣∣
ℓ∑

i=1

(
η̂2∗

i − η̄2
)∣∣∣∣∣∣∣

2+δ = Op

(
ℓ1+ δ

2

)
for some positive M, where the last equality for Op-term is a well-known fact in references on the
stationary bootstrap like Politis and Romano (1994) or Hwang and Shin (2012). Thus the first term
in (A.4) becomes Op(

∑n
ℓ=1 ρ(1 − ρ)ℓ−1ℓ1+δ/2) and the second term in (A.4) becomes Op(

∑∞
ℓ=n+1 ρ(1−

ρ)ℓ−1n1+δ/2), which is less than Op(
∑∞
ℓ=n+1 ρ(1 − ρ)ℓ−1ℓ1+δ/2). Thus, (A.4) is of order Op(1/ρ1+δ/2)

using the identity
∑∞
ℓ=1(1 − ρ)ℓ−1ℓa = O(1/ρa+1) for a ≥ 1.
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Hence E∗
[
|ξ∗n,k |2+δ

]
= Op(1/(nρh)1+δ/2) and thus the left term in (A.3) is of order Op(τ/(nρh)1+δ/2).

Since τ = nρ+Op(
√

nρ) by Politis and Romano (1994), the left term in (A.3) is of order Op(1/((nρh)δ/2

h)), which tends to zero for choosing ρ such that nρh1+2/δ → ∞. Therefore, the convergence in
probability in (A.3) holds and the desired asymptotic normality of

∑n
i=1 ϕ

∗
i (e) is established. �
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