• Title/Summary/Keyword: Nonlocal theory

Search Result 444, Processing Time 0.023 seconds

Novel quasi 3D theory for mechanical responses of FG-CNTs reinforced composite nanoplates

  • Alazwari, Mashhour A.;Daikh, Ahmed Amine;Eltaher, Mohamed A.
    • Advances in nano research
    • /
    • v.12 no.2
    • /
    • pp.117-137
    • /
    • 2022
  • Effect of thickness stretching on free vibration, bending and buckling behavior of carbon nanotubes reinforced composite (CNTRC) laminated nanoplates rested on new variable elastic foundation is investigated in this paper using a developed four-unknown quasi-3D higher-order shear deformation theory (HSDT). The key feature of this theoretical formulation is that, in addition to considering the thickness stretching effect, the number of unknowns of the displacement field is reduced to four, and which is more than five in the other models. Two new forms of CNTs reinforcement distribution are proposed and analyzed based on cosine functions. By considering the higher-order nonlocal strain gradient theory, microstructure and length scale influences are included. Variational method is developed to derive the governing equation and Galerkin method is employed to derive an analytical solution of governing equilibrium equations. Two-dimensional variable Winkler elastic foundation is suggested in this study for the first time. A parametric study is executed to determine the impact of the reinforcement patterns, nonlocal parameter, length scale parameter, side-t-thickness ratio and aspect ratio, elastic foundation and various boundary conditions on bending, buckling and free vibration responses of the CNTRC plate.

Refined nonlocal strain gradient theory for mechanical response of cosine FG-GRNC laminated nanoshells rested on elastic foundation

  • Mohamed A. Eltaher;A.A. Daikh;Amin Hamdi;Gamal S. Abdelhaffez; Azza M. Abdraboh
    • Advances in nano research
    • /
    • v.17 no.4
    • /
    • pp.335-350
    • /
    • 2024
  • This paper investigates the mechanical behavior of a new type of functionally graded graphene-reinforced nanocomposite (FG-GRNC) doubly-curved laminated shells, referred to as cosine FG-GRNC. The study employs a refined higher-order shear deformation shell theory combined with a modified continuum nonlocal strain gradient theory. The effective Young's modulus of the GRNC shell in the thickness direction is determined using the modified Halpin-Tsai model, while Poisson's ratio and mass density are calculated using the rule of mixtures. The analysis includes two graphene-reinforced distribution patterns-FG-A CNRCs and FG-B CNRCs-along with uniform UD CNRCs. An enhanced Galerkin method is used to solve the governing equilibrium equations for the GRNC nanoshell, yielding closed-form solutions for bending deflection and critical buckling loads. The nanoshell is supported by an orthotropic elastic foundation characterized by three parameters. A detailed parametric analysis is performed to evaluate how factors such as the length scale parameter, nonlocal parameter, distribution pattern, GPL weight fraction, shell thickness, and shell geometry influence deflections and critical buckling loads.

ASYMPTOTIC STABILITY OF STRONG SOLUTIONS FOR EVOLUTION EQUATIONS WITH NONLOCAL INITIAL CONDITIONS

  • Chen, Pengyu;Kong, Yibo;Li, Yongxiang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.319-330
    • /
    • 2018
  • This paper is concerned with the global asymptotic stability of strong solutions for a class of semilinear evolution equations with nonlocal initial conditions on infinite interval. The discussion is based on analytic semigroups theory and the gradually regularization method. The results obtained in this paper improve and extend some related conclusions on this topic.

EXISTENCE AND NONEXISTENCE OF POSITIVE SOLUTIONS TO NONLOCAL BOUNDARY VALUE PROBLEMS WITH STRONG SINGULARITY

  • Chan-Gyun Kim
    • East Asian mathematical journal
    • /
    • v.39 no.1
    • /
    • pp.29-36
    • /
    • 2023
  • In this paper, we consider φ-Laplacian nonlocal boundary value problems with singular weight function which may not be in L1(0, 1). The existence and nonexistence of positive solutions to the given problem for parameter λ belonging to some open intervals are shown. Our approach is based on the fixed point index theory.

Free vibration analysis of a piezoelectric nanobeam using nonlocal elasticity theory

  • Kaghazian, Abbas;Hajnayeb, Ali;Foruzande, Hamidreza
    • Structural Engineering and Mechanics
    • /
    • v.61 no.5
    • /
    • pp.617-624
    • /
    • 2017
  • Piezoelectric nanobeams are used in several nano electromechanical systems. The first step in designing these systems is conducting a vibration analysis. In this research, the free vibration of a piezoelectric nanobeam is analyzed by using the nonlocal elasticity theory. The nanobeam is modeled based on Euler-Bernoulli beam theory. Hamilton's principle is used to derive the equations of motion and also the boundary conditions of the system. The obtained equations of motion are solved by using both Galerkin and the Differential Quadrature (DQ) methods. The clamped-clamped and cantilever boundary conditions are analyzed and the effects of the applied voltage and nonlocal parameter on the natural frequencies and mode shapes are studied. The results show the success of Galerkin method in determining the natural frequencies. The results also show the influence of the nonlocal parameter on the natural frequencies. Increasing a positive voltage decreases the natural frequencies, while increasing a negative voltage increases them. It is also concluded that for the clamped parts of the beam and also other parts that encounter higher values of stress during free vibrations of the beam, anti-nodes in voltage mode shapes are observed. On the contrary, in the parts of the beam that the values of the induced stress are low, the values of the amplitude of the voltage mode shape are not significant. The obtained results and especially the mode shapes can be used in future studies on the forced vibrations of piezoelectric nanobeams based on Galerkin method.

Deformation in a nonlocal magneto-thermoelastic solid with hall current due to normal force

  • Lata, Parveen;Singh, Sukhveer
    • Geomechanics and Engineering
    • /
    • v.22 no.2
    • /
    • pp.109-117
    • /
    • 2020
  • The present article is concerned about the study of disturbances in a homogeneous nonlocal magneto-thermoelastic medium under the combined effects of hall current, rotation and two temperatures. The model under assumption has been subjected to normal force. Laplace and Fourier transform have been used for finding the solution to the field equations. The analytical expressions for conductive temperature, stress components, normal current density, transverse current density and displacement components have been obtained in the physical domain using a numerical inversion technique. The effects of hall current and nonlocal parameter on resulting quantities have been depicted graphically. Some particular cases have also been figured out from the current work. The results can be very important for the researchers working in the field of magneto-thermoelastic materials, nonlocal thermoelasticity, geophysics etc.

Thermoelastic interaction in functionally graded nanobeams subjected to time-dependent heat flux

  • Zenkour, Ashraf M.;Abouelregal, Ahmed E.
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.909-924
    • /
    • 2015
  • This paper investigates the vibration phenomenon of a nanobeam subjected to a time-dependent heat flux. Material properties of the nanobeam are assumed to be graded in the thickness direction according to a novel exponential distribution law in terms of the volume fractions of the metal and ceramic constituents. The upper surface of the functionally graded (FG) nanobeam is pure ceramic whereas the lower surface is pure metal. A nonlocal generalized thermoelasticity theory with dual-phase-lag (DPL) model is used to solve this problem. The theories of coupled thermoelasticity, generalized thermoelasticity with one relaxation time, and without energy dissipation can extracted as limited and special cases of the present model. An analytical technique based on Laplace transform is used to calculate the variation of deflection and temperature. The inverse of Laplace transforms are computed numerically using Fourier expansion techniques. The effects of the phase-lags (PLs), nonlocal parameter and the angular frequency of oscillation of the heat flux on the lateral vibration, the temperature, and the axial displacement of the nanobeam are studied.

APPROXIMATIONS OF SOLUTIONS FOR A NONLOCAL FRACTIONAL INTEGRO-DIFFERENTIAL EQUATION WITH DEVIATED ARGUMENT

  • CHADHA, ALKA;PANDEY, DWIJENDRA N.
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.5_6
    • /
    • pp.699-721
    • /
    • 2015
  • This paper investigates the existence of mild solution for a fractional integro-differential equations with a deviating argument and nonlocal initial condition in an arbitrary separable Hilbert space H via technique of approximations. We obtain an associated integral equation and then consider a sequence of approximate integral equations obtained by the projection of considered associated nonlocal fractional integral equation onto finite dimensional space. The existence and uniqueness of solutions to each approximate integral equation is obtained by virtue of the analytic semigroup theory via Banach fixed point theorem. Next we demonstrate the convergence of the solutions of the approximate integral equations to the solution of the associated integral equation. We consider the Faedo-Galerkin approximation of the solution and demonstrate some convergenceresults. An example is also given to illustrate the abstract theory.