• Title/Summary/Keyword: Nonlinearity coefficient

Search Result 89, Processing Time 0.022 seconds

Analysis of Structural joints Using Flexibility Influence Coefficient (유연성 영향 계수를 이용한 구조물의 결합부 해석)

  • 이재운;고강호;이수일;이장무
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.831-836
    • /
    • 1994
  • This paper presents rational modeling and analysis method for complex structures with various structural joints. For modeling of structural joint, a general modeling technique is newly proposed by flexibility influence coefficient and inverse of flexibility matrix and static reduction concept which is applied to the retained DOFs(degrees of freedom) of detailed finite element model of struction joints. By this method,joint model with contact surface. which can not be reduced by the general reduction theory such as Guyan reduction theory ,can be reduced effectively. And in this method, the nonlinearity of the contact surface can be linearized within a proper range and the boundary effects of joint region can be excluded. Using the proposed method, screwed joint,glued joint and bolted joint are analyzed. And the effectiveness of the proposed method is verified by experiments.

  • PDF

Electrical and Dielectric Properties, and Accelerated Aging Characteristics of Lanthania Doped Zinc Oxide Varistors

  • Nahm, Choon-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.4
    • /
    • pp.189-195
    • /
    • 2006
  • The microstructure, electrical and dielectric properties, and stability against DC accelerated aging stress of the varistors, which are composed of quaternary system $ZnO-Pr_6O_{11}CoO-Cr_2O_3-based$ ceramics, were investigated for different $La_2O_3$ contents. The increase of $La_2O_3$ content led to more densified ceramics, whereas abruptly decreased the nonlinear properties by incorporating beyond 1.0mol%. The highest nonlinearity was obtained from 0.5mol% $La_2O_3$, with the nonlinear coefficient of 81.6 and the leakage current of $0.1{\mu}A$. The varistors doped with 0.5mol% $La_2O_3$ exhibited high stability, in which the variation rates of breakdown voltage, nonlinear coefficient, leakage current, dielectric constant, and dissipation factor were -1.1%, -3.7%, +100%, +1.4%, and +8.2%, respectively, for stressing state of $0.95V_{1mA}/150^{\circ}C/24h$.

Voltage Enhancement of ZnO Oxide Varistors for Various Y2O3 Doping Compositions

  • Yoon, Jung-Rag;Lee, Chang-Bae;Lee, Kyung-Min;Lee, Heun-Young;Lee, Serk-Won
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.5
    • /
    • pp.152-155
    • /
    • 2009
  • The microstructure and the electrical properties of a ZnO varistor, which was composed of a ZnO-$Bi_2O_3$-$Sb_2O_3$-CoO- $MnO_2$ -NiO-$Nd_2O_3$ system, were investigated at various $Y_2O_3$ addition concentrations. $Y_2O_3$ played a role in the inhibition of the grain growth. As the $Y_2O_3$ content increased, the average grain size decreased from $6.8{\mu}m$ to $4{\mu}m$, and the varistor voltage($V_{1mA}$) greatly increased from 275 to 400 V/mm. The nonlinearity coefficient ($\alpha$) decreased from 72 to 65 with increasing $Y_2O_3$ amount. On the other hand, the leakage current ($I_L$) increased from 0.2 to 0.9 ${\mu}A$. These results confirmed that doping the varistors with $Y_2O_3$ is a promising production route for production of a higher fine-grained varistor voltage ($V_{1mA}$) which can dramatically reduce the size of the varistors.

Fabrication and Performance Evaluation of Thin Polysilicon Strain Gauge Bonded to Metal Cantilever Beam (금속 외팔보에 접착된 박막 실리콘 스트레인 게이지의 제작 및 성능 평가)

  • Kim, Yong-Dae;Kim, Young-Deok;Lee, Chul-Sub;Kwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.391-398
    • /
    • 2010
  • In this paper, we propose a sensor design by using a polysilicon strain gauge bonded to a metal diaphragm. The fabrication process of the thin polysilicon strain gauges having thicknesses of $50\;{\mu}m$ was established using conventional MEMS technologies; further, the technique of glass frit bonding of the polysilicon strain gauge to the stainless steel diaphragm was established. Performance of the polysilicon strain gauge bonded to the metal cantilever beam was evaluated. The gauge factor, temperature coefficient of resistance (TCR), nonlinearity, and hysteresis of the polysilicon strain gauge were measured. The results demonstrate that the resistance increases linearly with tensile stress, while it decreases with compressive stress. The value of the gauge factor, which represents the sensitivity of strain gauges, is 34.0; this value is about 7.15 times higher than the gauge factor of a metal-foil strain gauge. The resistance of the polysilicon strain gauge decreases linearly with an increase in the temperature, and TCR is $-328\;ppm/^{\circ}C$. Further, nonlinearity and hysteresis are 0.21 % FS and 0.17 % FS, respectively.

Comprehensive investigation of buckling behavior of plates considering effects of holes

  • Mohammadzadeh, Behzad;Choi, Eunsoo;Kim, Woo Jin
    • Structural Engineering and Mechanics
    • /
    • v.68 no.2
    • /
    • pp.261-275
    • /
    • 2018
  • A comprehensive study was provided to investigate the buckling behavior of the steel plates with and without through-thickness holes subjected to uniaxial compression using ABAQUS. The method was validated by the results reported in the literature. Using the critical stresses, the buckling coefficients ($K_c$) were calculated. The effects of inclusion of material nonlinearity, plate thickness (t), aspect ratio (AR), and initial imperfection on buckling resistance of the plate was studied. Besides, the effects of having the hole in the plate were also studied. The diameter of the hole was normalized by dividing by plate breadth and was given in the form of ${\alpha}$. Results showed that perforating one hole in the center of a plate increases the plate buckling resistance while the having two holes resulted in a decrease in the plate buckling resistance. The effects of hole eccentricity (Ecc) on the buckling resistance of the plate was studied. The position of the hole center was normalized by half of the plate breadth and length in X- and Y-directions, respectively. In this study, four cases of boundary conditions were considered, and the corresponding buckling behavior were studied combined with plate aspect ratio. It was observed that the boundary condition of the case I resulted in the highest buckling resistance. Finally, a comparison was made between the buckling behavior of the uniaxially and biaxially loaded plate. It was revealed that the buckling resistance of a biaxially loaded plate is lower half than half of that of the uniaxially loaded plate.

A Robust Digital Pre-Distortion Technique in Saturation Region for Non-linear Power Amplifier (비선형 전력 증폭기의 포화영역에서 강인한 디지털 전치왜곡 기법)

  • Hong, Soon-Il;Jeong, Eui-Rim
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.681-684
    • /
    • 2015
  • Power amplifier is an essential component for transmitting signals to a remote receiver in wireless communication systems. Power amplifier is a non-linear device in general, and the nonlinear distortion becomes severer as the output power increases. The nonlinearity results in spectral regrowth, which leads to adjacent channel interference, and decreases the transmit signal quality. To linearize power amplifiers, many techniques have been developed so far. Among the techniques, digital pre-distortion is known as the most cost and performance effective technique. However, the linearization performance falls down abruptly when the power amplifier operates in its saturation region. This is because of the severe nonlinearity. To relieve this problem, this paper proposes a new adaptive predistortion technique. The proposed technique controls the adaptive algorithm based on the power amplifier input level. Specifically, for small signals, the adaptive predistortion algorithm works normally. On the contrary, for large signals, the adaptive algorithm stops until small signals occur again. By doing this, wrong coefficient update by severe nonlinearity can be avoided. Computer simulation results show that the proposed method can improve the linearization performance compared with the conventional digital predistortion algorithms.

  • PDF

Midinfrared Pulse Compression in a Dispersion-decreasing and Nonlinearity-increasing Tapered As2S3 Photonic Crystal Fiber

  • Shen, Jianping;Zhang, Siwei;Wang, Wei;Li, Shuguang;Zhang, Song;Wang, Yujun
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.250-260
    • /
    • 2021
  • A tapered As2S3 photonic crystal fiber (PCF) with four layers of air holes in a hexagonal array around the core is designed in this paper. Numerical simulation shows that the dispersion D decreases and the nonlinearity coefficient γ increases from the thick to the thin end along the tapered PCF. We simulate the midinfrared pulse compression in the tapered As2S3 PCF using the adaptive split-step Fourier method. Initial Gaussian pulses of 4.4 ps and a central wavelength of 2.5 ㎛ propagating in the tapered PCF are located in the anomalous dispersion region. With an average power of assumed input pulses at 3 mW and a repetition frequency of 81.0 MHz, we theoretically obtain a pulse duration of 56 fs and a compression factor of 78 when the pulse propagates from the thick end to the thin end of the tapered PCF. When confinement loss in the tapered PCF is included in the simulation, the minimum pulse duration reaches 72 fs; correspondingly, the maximum compression factor reaches 61. The results show that in the anomalous-dispersion region, midinfrared pulses can be efficiently compressed in a dispersion-decreasing and nonlinearity-increasing tapered As2S3 PCF. Due to confinement loss in the tapered fiber, the efficiency of pulse compression is suppressed.

Stochastic thermo-mechanically induced post buckling response of elastically supported nanotube-reinforced composite beam

  • Chaudhari, Virendra Kumar;Shegokar, Niranjan L.;Lal, Achchhe
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.5
    • /
    • pp.585-611
    • /
    • 2017
  • This article covenants with the post buckling witticism of carbon nanotube reinforced composite (CNTRC) beam supported with an elastic foundation in thermal atmospheres with arbitrary assumed random system properties. The arbitrary assumed random system properties are be modeled as uncorrelated Gaussian random input variables. Unvaryingly distributed (UD) and functionally graded (FG) distributions of the carbon nanotube are deliberated. The material belongings of CNTRC beam are presumed to be graded in the beam depth way and appraised through a micromechanical exemplary. The basic equations of a CNTRC beam are imitative constructed on a higher order shear deformation beam (HSDT) theory with von-Karman type nonlinearity. The beam is supported by two parameters Pasternak elastic foundation with Winkler cubic nonlinearity. The thermal dominance is involved in the material properties of CNTRC beam is foreseen to be temperature dependent (TD). The first and second order perturbation method (SOPT) and Monte Carlo sampling (MCS) by way of CO nonlinear finite element method (FEM) through direct iterative way are offered to observe the mean, coefficient of variation (COV) and probability distribution function (PDF) of critical post buckling load. Archetypal outcomes are presented for the volume fraction of CNTRC, slenderness ratios, boundary conditions, underpinning parameters, amplitude ratios, temperature reliant and sovereign random material properties with arbitrary system properties. The present defined tactic is corroborated with the results available in the literature and by employing MCS.

Seismic evaluation of soil-foundation-structure interaction: Direct and Cone model

  • Khazaei, Jahangir;Amiri, Azadeh;Khalilpour, Mehrdad
    • Earthquakes and Structures
    • /
    • v.12 no.2
    • /
    • pp.251-262
    • /
    • 2017
  • The present research intends to study the effects of the seismic soil-foundation-structure interaction (SFSI) on the dynamic response of various buildings. Two methods including direct and Cone model were studied through 3D finite element method using ABAQUS software. Cone model as an approximate method to consider the SFSI phenomenon was developed and evaluated for both high and low rise buildings. Effect of soil nonlinearity, foundation rigidity and embedment as well as friction coefficient between soil-foundation interfaces during seismic excitation are investigated. Validity and performance of both approaches are evaluated as reference graphs for Cone model and infinite boundary condition, soil nonlinearity and amplification factor for direct method. A series of calculations by DeepSoil for inverse earthquake record modification was conducted. A comparison of the two methods was carried out by root-mean-square-deviation (RMSD) tool for maximum lateral displacement and story shear forces which verifies that Cone model results have good agreement with direct method. It was concluded that Cone method is a convenient, fast and rather accurate method as an approximate way to count for soil media.

ON SOLVABILITY OF A CLASS OF DEGENERATE KIRCHHOFF EQUATIONS WITH LOGARITHMIC NONLINEARITY

  • Ugur Sert
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.3
    • /
    • pp.565-586
    • /
    • 2023
  • We study the Dirichlet problem for the degenerate nonlocal parabolic equation ut - a(||∇u||2L2(Ω))∆u = Cb ||u||βL2(Ω) |u|q(x,t)-2 u log |u| + f in QT, where QT := Ω × (0, T), T > 0, Ω ⊂ ℝN, N ≥ 2, is a bounded domain with a sufficiently smooth boundary, q(x, t) is a measurable function in QT with values in an interval [q-, q+] ⊂ (1, ∞) and the diffusion coefficient a(·) is a continuous function defined on ℝ+. It is assumed that a(s) → 0 or a(s) → ∞ as s → 0+, therefore the equation degenerates or becomes singular as ||∇u(t)||2 → 0. For both cases, we show that under appropriate conditions on a, β, q, f the problem has a global in time strong solution which possesses the following global regularity property: ∆u ∈ L2(QT) and a(||∇u||2L2(Ω))∆u ∈ L2(QT ).