• Title/Summary/Keyword: Nonlinear transform

Search Result 285, Processing Time 0.088 seconds

Three-Level Optimal Control of Nonlinear Systems Using Fast Walsh Transform (고속월쉬변환을 이용한 비선형 시스템의 3계층 최적제어)

  • Kim, Tai-Hoon;Shin, Seung-Kwon;Cho, Young-Ho;Lee, Han-Seok;Lee, Jae-Chun;Ahn, Doo-Soo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.11
    • /
    • pp.505-513
    • /
    • 2001
  • This paper presents the new three-level optimal control scheme for the large scale nonlinear systems, which is based on fast walsh transform. It is well known that optimization for nonlinear systems leads to the resolution of a nonlinear two point boundary value problem which always requires a numerical iterative technique for their solution. However, Three-level costate coordination can avoid two point boundary condition in subsystem. But this method also has the defect that must solve high order differential equation in intermediate level. The proposed method makes use of fast walsh transform, therefore, is simple in computation because of solving algebra equation instead of differential equation.

  • PDF

An Adaptive Volterra Series-based Nonlinear Equalizer Using M-band Wavelet Transform (M-band 웨이블릿 변환을 이용한 볼테라 적응 등화기)

  • Kim, Young-Keun;Kang, Dong-Jun;Nam, Sang-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.5
    • /
    • pp.415-419
    • /
    • 2001
  • This paper proposes and adaptive nonlinear equalizer based on Volterra Series along with M-band wavelet transform(M-DWT). The proposed wavelet transform-domain approach leads to diagonalization of the input vector auto-correlation matrix, which yields clustering its eigenvalue spread around one, and improving the convergence rate of the corresponding transform-domain LMS algorithm. In particular, the proposed adaptive Volterra equalizer is employed to compensate for the output distortion produced by a weakly nonlinear system. Finally, some simulation results obtained by using a TWT amplifier model are provide to demonstrated the converging performance of the proposed approach.

  • PDF

A combined spline chirplet transform and local maximum synchrosqueezing technique for structural instantaneous frequency identification

  • Ping-Ping Yuan;Zhou-Jie Zhao;Ya Liu;Zhong-Xiang Shen
    • Smart Structures and Systems
    • /
    • v.33 no.3
    • /
    • pp.201-215
    • /
    • 2024
  • Spline chirplet transform and local maximum synchrosqueezing are introduced to present a novel structural instantaneous frequency (IF) identification method named local maximum synchrosqueezing spline chirplet transform (LMSSSCT). Namely spline chirplet transform (SCT), a transform is firstly introduced based on classic chirplet transform and spline interpolated kernel function. Applying SCT in association with local maximum synchrosqueezing, the LMSSSCT is then proposed. The index of accuracy and Rényi entropy show that LMSSSCT outperforms the other time-frequency analysis (TFA) methods in processing analytical signals, especially in the presence of noise. Numerical examples of a Duffing nonlinear system with single degree of freedom and a two-layer shear frame structure with time-varying stiffness are used to verify the effectiveness of structural IF identification. Moreover, a nonlinear supported beam structure test is conducted and the LMSSSCT is utilized for structural IF identification. Numerical simulation and experimental results demonstrate that the presented LMSSSCT can effectively identify the IFs of nonlinear structures and time-varying structures with good accuracy and stability.

Extraction of Nonlinear Dynamical Component by Wavelet Transform in Hydro-meteorological Data (수문기상자료의 웨이블렛 변환에 의한 비선형 동역학적 성분의 추출)

  • Jin, Young-Hoon;Park, Sung-Chun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5B
    • /
    • pp.439-446
    • /
    • 2006
  • In the present study, we applied wavelet transform to decompose the hydro-meteorological data such as precipitation and temperature into the components with different return periods with a primary objective for extraction of nonlinear dynamical component. For the transform, we used the Daubechies wavelet of order 9 ('db9') as a basis function. Also, we applied the correlation dimension analysis to determine whether or not the detail and approximation components at the respective decomposition stage with the increasing of scale in the wavelet transform reveal the nonlinear dynamical characteristics. In other words, we proposed the combined use of the wavelet transform and the correlation dimension analysis as methodology to extract the nonlinear dynamical component from the hydro-meteorological data. The derived result has shown the method proposed in the present study is suitable for the segregation and extraction of the nonlinear dynamical component which is, in general, difficult to reveal by using the raw data.

A formal linearization of nonlinear systems based on the discrete-fourier transform

  • Takata, Hitoshi;Komatsu, Kazuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1823-1827
    • /
    • 1991
  • The problem regarding nonlinear systems has come to occupy an important position. In order to solve a nonlinear problem we have methods of linearization which are developed through linear approximation to adapt linear system theories. In this paper we present a formal linearization of nonlinear systems based on the discrete-Fourier transform (D.F.T.).

  • PDF

Parameter Identifieation of Nonlinear Structure (비선형 구조물의 매개변수 규명)

  • 김우영;황원걸;기창두
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.363-368
    • /
    • 1993
  • Hilbert Transform has been used for detection of nonlinearity in modal analysis. HTD(Hilbert Transform Describers) are used to quantify and identify nonlinearity. Mottershead and Stanway method for identification of N-th power velocity nonlinear damping are extended to P-th power displacement stiffness, N-th power velocity damping and dry friction. Time domain and frequency domain data are used and HTD and Mottershead methods are combined for identification of nonlinear parameters in this paper. Computer simulations and experimental results are shown to verify nonlinear structure identification methods.

  • PDF

ANALYTICAL TECHNIQUES FOR SYSTEM OF TIME FRACTIONAL NONLINEAR DIFFERENTIAL EQUATIONS

  • Choi, Junesang;Kumar, Devendra;Singh, Jagdev;Swroop, Ram
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1209-1229
    • /
    • 2017
  • We coupled the so-called Sumudu transform with the homotopy perturbation method (HPM) and the homotopy analysis method (HAM), which are called homotopy perturbation Sumudu transform method (HPSTM) and homotopy analysis Sumudu transform method (HASTM), respectively. Then we show how HPSTM and HASTM are more convenient than HPM and HAM by conducting a comparative analytical study for a system of time fractional nonlinear differential equations. A Maple package is also used to enhance the clarity of the involved numerical simulations.

On the Linearization of Volterra Nonlinear Systems using DWT and a Predistorter (DWT 및 전치 왜곡기를 이용한 볼테라 시스템 선형화)

  • 강동준;김영근;남상원
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.553-556
    • /
    • 2000
  • This paper proposes an adaptive linearization method of Volterra nonlinear systems using DWT(Discrete Wavelet Transform)and an LMS-type predistorter. In particular, the proposed wavelet transform-domain lineatization method leads to diagonalization of the input vector auto-correlation matrix which yields improvement of the convergence rate of the corresponding transform-domain LMS algorithm. Furthermore, the adaptive Volterra predistorter followed by a corresponding weakly Volterra nonlinear system(here. a TWT amplifier model in a satellite communication system) is utilized to compensate for the distortion in the output. Also,12-PSK and 4-QAM are applied as the input to the nonlinear system to be tested. Some simulation results show that the proposed linearization approach has better performance than DCT-based or conventional normalized LMS algorithms do.

  • PDF

A study on nonlinear seismic response analysis of building considering frequency dependent soil impedance in time domain

  • Nakamura, Naohiro
    • Interaction and multiscale mechanics
    • /
    • v.2 no.1
    • /
    • pp.91-107
    • /
    • 2009
  • In order to accurately estimate the seismic behavior of buildings, it is important to consider both nonlinear characteristics of the buildings and the frequency dependency of the soil impedance. Therefore, transform methods of the soil impedance in the frequency domain to the impulse response in the time domain are needed because the nonlinear analysis can not be carried out in the frequency domain. The author has proposed practical transform methods. In this paper, seismic response analyses considering frequency dependent soil impedance in the time domain are shown. First, the formulation of the proposed transform methods is described. Then, the linear and nonlinear earthquake response analyses of a building on 2-layered soil were carried out using the transformed impulse responses. Through these analyses, the validity and efficiency of the methods were confirmed.

Improvement of Historical-Hanja Recognition Using a Nonlinear Transform of Contour Directional Feature Vectors

  • Kim, Min Soo;Kim, Jin Hyung
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.3
    • /
    • pp.503-511
    • /
    • 2004
  • In Korea, OCR-based techniques have been developed for digital library construction of historical documents. In this paper, we propose the nonlinear transform of contour directional feature (CDF) vectors using log it and power transforms with skewness criterion to enhance the discriminant power. Experiments were conducted using samples from Seung-jung-won diaries (Diaries of King's Secretaries). Our results show that proposed method outperforms the others like Box-Cox transform in this database.