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ANALYTICAL TECHNIQUES FOR SYSTEM OF TIME
FRACTIONAL NONLINEAR DIFFERENTIAL EQUATIONS

JUNESANG CHOI, DEVENDRA KUMAR, JAGDEV SINGH, AND RAM SWROOP

ABSTRACT. We coupled the so-called Sumudu transform with the ho-
motopy perturbation method (HPM) and the homotopy analysis method
(HAM), which are called homotopy perturbation Sumudu transform
method (HPSTM) and homotopy analysis Sumudu transform method
(HASTM), respectively. Then we show how HPSTM and HASTM are
more convenient than HPM and HAM by conducting a comparative an-
alytical study for a system of time fractional nonlinear differential equa-
tions. A Maple package is also used to enhance the clarity of the involved
numerical simulations.

1. Introduction, notations and preliminaries

The systems of fractional (non-integer) order nonlinear differential equa-
tions have been found to allow a greater degree of freedom in the mathematical
models (see, e.g., [2,7,31,36]). Fractional calculus, the differentiation and in-
tegration of arbitrary order, arises naturally in various areas of science and
engineering. Fractional calculus is also a tool for modeling phenomena associ-
ated with non-locality and genetic effects (see, e.g., [28,39,43,45]). Homotopy
perturbation Sumudu transform method (HPSTM) is a method that couples
Sumudu transform with homotopy perturbation method and He’s polynomials
(see [23-25]). Also homotopy analysis Sumudu transform method (HASTM)
is a coupling of Sumudu transform with classical homotopy analysis method.
Homotopy perturbation method (HPM) was proposed by He (see [23-25]) and
has been used to solve a number of problems in various fields of science and en-
gineering (see, e.g., [21,22,51]). Watugala [49] introduced Sumudu transform,
which has turned out to play a very important role in solving a variety of prob-
lems such as ordinary differential equations, partial differential equations, and
fractional differential and integral equations (see, e.g., [5,17-20,29,30]). Re-
cently the HPSTM has been applied for solving linear and nonlinear equations
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including (for example) fractional heat-like equations, fractional heat and wave-
like equations, fractional gas dynamics equation (see, e.g., [10,46,47]). Homo-
topy analysis method (HAM) was first introduced and applied by Liao [32],
who has given a systematic and basic idea of the HAM, and carried out a
comparative study with other analytical methods, and applied in science and
engineering (see [33-35,53]).

The HAM is a recently developed analytical technique, which has been ap-
plied to such many problems as nonlinear heat transfer, the American put
option, the option pricing under stochastic volatility, linear and nonlinear dif-
fusion wave, space-time advection-dispersion, the electro hydrodynamic flows,
and the Poisson—Boltzmann equation for semiconductor devices (see, e.g., [1,
27,38,40-42,52]).

Here, in this paper, we show how the HPSTM and the HASTM are more
efficient and convenient than the HPM and the HAM by carrying out a com-
parative analytical study for system of time fractional nonlinear differential
equations. In fact, unlike HPM, HPSTM is uniformly valid for either small or
large parameters and variables; also HASTM is more convenient than HAM
in that the differentiation property of Sumudu transform is used in HASTM
without the assumption of auxiliary linear operator in HAM. A Maple package
is used to enhance the clarity of the involved numerical simulations.

For our purpose, we recall some definitions with some of their properties. In
the following, let C and N be the sets of complex numbers and positive integers,
respectively, and Ny := NU{0}. Let a € C with R(a) > 0 and [a, b] be a finite
interval of the real line R := (—o00, 00). Also let

(1.1) n=[R)]+1 (@€Ny); n=a (aeNy).

e Among various fractional derivatives, the fractional derivative of f(t)
in the Caputo sense is defined as follows (see, e.g., [28, Section 2.4]; see
also [15]):

1

(12) (D2H) )= o=y | (=7 ),

where f(™)(7) is the usual derivative of integer order n.

Very recently, by modifying the Caputo fractional derivative (1.2)
when n = 1, Caputo and Fabrizio [16] have proposed a new non-local
fractional derivative able to describe material heterogeneities and struc-
tures with different scales, which cannot be well described by classical

local theories:
at—r1)
T1-a / ' [ 1-a ar

(aE [0,1], a € [-00,t), f € H(a,b), b>a),

(1.3) DI f(#)




(1.9)
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where M («) is a normalization function such that M(0) = M(1) = 1.
Tt is noted that, contrary to the definition (1.2), the kernel in (1.3) does
not have singularity at t = 7.

They [16] also showed that the definition (1.3) can be applied to
functions that do not belong to H'(a,b) as follows:

o s = 2 ") - £ e [a“)] dr

l—-a J_o l1-a

(oz el0,1], fe Ll(—oo,b)) )

After the introduction of the new fractional derivative in (1.3), Losada
and Nieto [37] proposed the following associative fractional integral
(anti-derivative) of order « of a function f (see also [6]):

2(1 — ) 20 K
DO+ e [ fndr
(2—a)M(a) (2—a)M(a) Jo

O<a<l t>0).
Consider the following generalized Mittag-Leffler function:

I, (f(t) =

B, (t%) =
k=0

tock
F(ak+1)

Atangana and Baleanu [9] have proposed the following new fractional
derivative:

ABEDY (f(t) = % /bt f(r) B {_a(t_ﬂa} dT

1—«

(ae [0,1], f € H'(a,b), b>a)7

where B(a) has the same properties as those of M(«) in (1.3).

It is noted that the case « = 0 in (1.7) does not recover the original
function except when f(b) = 0. To revise this issue, they [9] have also
proposed the following definition:

aBgpe (f(t)) = 21 1 /b J() Ea [—a“”)a} dr.

:1—a£ l1—«

In connection with the new fractional derivative (1.7), Atangana
and Koca [11] proposed the following associate fractional integral (anti-
derivative) with nonlocal kernel of a function f (see also [4]):

1-a « ’ _ne-lgr
5 10+ 5t / f(7) (¢ — 7)o dr.

For more detailed properties and various applications of the newly-
proposed fractional derivatives in (1.3), (1.4), (1.7), and (1.8), one may
refer to the works [3,4,6,8,9,11,16,37] and the references therein.

AR} =
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(1.10)

(1.11)

(1.12)

(1.13)
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e Suppose that f(t) is a real- or complex-valued function of the (time)

variable t > 0 and s is a real or complex parameter. The Laplace
transform of the function f(t) is defined by

oo
F(s) = (LN () = LU W ssh= [ e oy
0
= lim e St f (t)dt,
T—=oo Jo
whenever the limit exits (as a finite number). Then the Laplace trans-

form of the Caputo derivative is given as follows (see, e.g., [28, Eq.
(2.4.62)]; see also [15]):

LD, f) (s) = s (£F) (5) = 3 s (D*F) (0),
k=0

where a >0andn—1<a<n (neN).
The so-called Sumudu transform is an integral transform which was de-
fined and studied by Watugala [50] to facilitate the process of solving
differential and integral equations in the time domain. The Sumudu
transform has been applied to various problems in engineering and ap-
plied physics. For some fundamental properties of the Sumudu trans-
form, one may refer to the works including (for example) [5,13,14,50].
It turns out that the Sumudu transform has very special properties
which are useful in solving problems in science and engineering.

Let A be the class of exponentially bounded functions f : R — R,
that is,

M exp (—t> (t<0)

T1

7o)<
Mo (L) (t > 0)

T2
where M, 7, and 75 are some positive real constants. The Sumudu
transform defined on the set 2 is given by the following formula (see
[50]; see also [17])

G (u) = SIf (1) ] =/O°° et Flut)dt (—m<u<m).

The Sumudu transform given in (1.13) can also be derived directly
from the Fourier integral. Moreover, it can be easily verified that the
Sumudu transform is a linear operator and the function G(u) in (1.13)
keeps the same units as f(t); that is, for any real or complex number
A, we have

S[f(At);u] = G(Au).
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The Sumudu transform G(u) and the Laplace transform F'(s) exhibit
a duality relation that may be expressed as follows:

(1.14) G <1) —sF(s) or Gu=+ <1) .

S u u

The Sumudu transform has been shown to be the theoretical dual of the
Laplace transform. The Sumudu transform of the Caputo fractional
derivative of a function f(¢) can be given as follows (see, e.g., [14,
Theorem 2.2]):

n—1

(1.15) S [Dg, f(t)iu] =u ™ S[f(t);ul = Y u ™ (DFf) (0),

k=0

where a >0andn—1<a<n (ne€N).

e Let f be a function of [ variables ¢; (i =1, ..., l) defined on a domain
D C R!. Then define a partial Caputo fractional derivative of order o
of the function f with respect to ¢; by

(1.16) o f = ﬁ

t;
| =g e an
a
where z := (t1,...,t;—1, 7, tit1,...,ts) and o, n are given as in (1.1).
Here 0;! is the usual partial derivative of integer order n.

It may be remarked in passing that, throughout this paper, the fractional
derivative is the Caputo fractional derivative.

2. Basic idea of HPSTM

We illustrate the basic idea of HPSTM by considering a general time-fract-
ional nonlinear non-homogeneous partial differential equation with the initial
condition of the general form:

(21) (D) t)=Ry+Ny+g(z,t) (>0, n—1<a<n(neN)),
with the following initial conditions:
(D™y) (0) = fru(z) (m=0,...,n—1), (D"y)(0) =0, n=|q],

where y := y(x,t), (D%y) (¢) is the Caputo fractional derivative of the function
y(z,t) without the specified starting point a+ as in (1.2), R is the linear differ-
ential operator, A represents the general nonlinear differential operator. Here,
by applying the Sumudu transform on both sides of (2.1), we get

(22) S[(D%) (t);u] = S[Ry; u] + SN y; u] + Sg(x, t);ul,
which, upon using a property of the Sumudu transform (see (1.15)), yields
(2.3) Slysu] = f(z,u) +u” S[Ry;u] + u® SINy; u] + u*S[g(z, 1); ul,
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where f(x,u) is a function of x and u. Taking the inverse of Sumudu transform
on both sides of (2.3), we get

(2.4) y = F(z,t) + S (u* S[Ry; u]) + S (u* S[Ny; ul)
where F'(z,t) is a function of 2 and ¢ given by
F(z,t) =81 (f(z,u) + u*Sg(z, t);u])

which may be concretely determined, since g(z,t) is a known function.
Now we apply the HPM to the equation (2.1) to get the solution (see, e.g.,
[23-25]):

o0
(25) y(xat) = anyn(x7t)a

n=0
where p € [0, 1] is an embedding (or homotopy) parameter, yo is an initial
approximation which satisfies the boundary conditions, and y,, (n € N) are the
nth order approximations which are functions yet to be determined. It is noted
that setting p = 1 in (2.5) gives an approximate solution of the given nonlinear

differential equation (2.1).
The nonlinear term in (2.1) can be decomposed as follows (see, e.g., [26,44]):

(2.6) Ny(w,t) = 3 0" Ho (gor - y)
n=0

where H,, are the He’s polynomials given by

n! Op

(2.7) H, (Yo, -y Yn) = iinn/\/ <Z p"“yr(a:,t)> (n € Np).
r=0

Substituting (2.5) and (2.6) in (2.4) gives

(2.8)
> "y = F(a,t) +pS <ua$ R <Z p”%) +uS [Z p" H, > :
n=0 n=0 n=0

We have completed the coupling of the Sumudu transform and the HPM
using He’s polynomials. Comparing the coefficients of same power of p in (2.8),
we obtain the following approximations for y,, (n € Np):

P’ yo = F(a,t),

p iy =S (u*S[R(yo) + Ho(wo)))
P’y =SS [R(y1) + Hi(yo, y1)]) s

(29) pn Y Yn = Sil (UQS [R(yn—l) + Hn—l(yOa cee 7yn—1)]) (Tl € N)
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Finally the approximate and analytical solution of (2.1) is given by truncating
the following series:

oo
(2.10) y(@,t) = yo(w,t) + > yr(w,1).

k=1

3. Basic idea of HASTM

In order to illustrate the basic idea of HASTM, we consider a general frac-
tional nonlinear partial differential equation of the form:

(31) Na [y(x7t)] = g(xvt)v

where N, represents the general linear and nonlinear partial fractional differen-
tial operator, x denote an independent variable, y(z, t) is an unknown function.
The linear terms of N, are decomposed into D + R, where D is the highest
order linear operator and (D®y) (¢) is the Caputo fractional derivative of the
function y(z,t) without the specified starting point a+ as in (1.2), and R is the
remaining of the linear operator. The equation (3.1), therefore, can be written
as follows:

(32) D% t)+Ry+Ny=g(z,t) (>0, n—1<a<n(neN)),

where Ny indicates the nonlinear terms.
Taking the Sumudu transform (1.13) on both sides of the equation (3.2), we
get

(3.3) S(D%) ()] + S[Ry] + S[INy] = Sg(x,1)].
Using the property of the Sumudu transform (1.15), we have

ue —k

n—1 (k)
Gy A SO SRy + s = STt 1),
k=0

Or, equivalently,

n—1 (k) 0
65 shl-ue Y L0y (51 + SN - Slote0)]) = 0.
k=0

We define the nonlinear operator
n—1
ax 07 (2,t:)(0)
N[o(z,t;q)] = S[o(z, ;)] —u kz—o T

+u (SR, t;9)) + SNO(x, t.9)) = Sg(x,1)])
where ¢ € [0, 1] is a parameter, and §(z,¢;q) is a real-valued function of z, ¢
and q. We construct a homotopy as follows:

(37) (1 - Q) S [6(I7tQQ) - yO(QUt)} = th(Ivt) Ng [y(:z:,t)],

where S denotes the Sumudu transform, ¢ € [0, 1] is the embedding parameter,
H(x,t) depicts a nonzero auxiliary function, i # 0 is an auxiliary parameter,

(3.6)
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yo(z,t) is an initial guess of y(x,t) and (x,t;q) is a unknown function. Obvi-
ously, choosing the embedding parameter ¢ = 0 and ¢ = 1 in (3.7) gives

(3.8) §(z,t;0) = yo(z,t) and o(x,t;1) =y(x,t),

respectively.

Thus, as ¢ increases from 0 to 1, the solution §(z, ¢; ¢) varies from the initial
guess yo(z,t) to the solution y(z,t). Expanding 6(z,t;q) as Taylor series with
respect to ¢, we obtain

(3.9) 5. tiq) = yolw )+ > ym(z )™,
m=1
where
1 9™6(x,t;q)
1 - Z T\ )
(3 0) ym(l‘,t) m| aqm q:0

If the auxiliary linear operator, the initial guess, the auxiliary parameter f,
and the auxiliary function are properly chosen, the series (3.9) may converges
at ¢ = 1. Then we have

(3.11) y(@,t) = yola, ) + 3 Y2, 1),

m=1
which should be one of the solutions of the original nonlinear equation (3.1).
By (3.11), the governing equation can be deduced from the zero-order de-
formation (3.7). Define vectors

(312) 7m = {yo(a:,t), yl(x’t)v IR ym(x,t)}.

Differentiating the zeroth-order deformation Eq. (3.7) m-times with respect to
q and then dividing them by m! and finally setting ¢ = 0, we have the following
mth-order deformation equation:

(3.13) S [ym(z,t) = XmYm—1(x, )] = BH (2, ) R (F 1),

where

(3.14) R, (77”_1) _ 1 OmMTIN[§(x,t5q)]

(m—1)! dgm—1

q=0
and

0, m<1,
(3.15) X’"—{ 1, m>1.

Taking the inverse Sumudu transform on both sides of (3.13), we obtain the
following equation:

(316) ym(iﬂ, t) = mem—l(xa t)] + hsil [H(I, t) mm(?m—l)] .

It is noted that the success of the HASTM is based on a proper selection of the
initial guess.
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4. System of fractional nonlinear partial differential equations

In order to apply the HPSTM and the HASTM in Sections 2 and 3, respec-
tively, consider the following simple system of nonlinear fractional differential
equations:

(D%a) (t) + bgcy — bycy = —a,
(4.1) (D%b) (t) + cgay + cyay =,
(D%c) (t) + azby + ayb, = ¢,

with the initial conditions:
(4.2) a(z,y,0) = e, b(z,y,0) =e" Y, and c(x,y,0)=e "V,

where o € (0,1] is a parameter describing the order of the time fractional
derivative, D* is the Caputo fractional derivative in (1.2). It is noted that

a(x’ Y, t) = ew+y7t’ b(x; Y, t) = ez—y+t, and C(mv Y, t) = €7w+y+t
is an exact solution of the system of nonlinear differential equations (4.1) for
a=1
5. Use of the HPSTM

Taking Sumudu transform on the system (4.1) with the initial condition
(4.2), we get

Sla] = "V + u*S[—bycy + byc, — al,
(5.1) S[b] = e* Y + u*S[—cpay — cyay + b,
Sle] = eV + u*S[—azb, — ayby + .

Taking inverse of Sumudu transform on the system (5.1), we find

a=e" + 87 (u*S [—byey + byc, — al),
(5.2) b=e""Y+ 8 (uS [—cpay — cyaz + b)),
c=e "+ S (u*S [—azb, — ayb, + ).

We then apply the HPM to get the following system:
ST p"ay, = e +p571{ua (S( — > p"Hp(bscy)
m=0 o m:OOO
+ Z pmHm(bycw) - E pmam>)}a
o m=0 C>Om=0
S Py, = et Y —|—pS‘1{u“ (S((— > p"Hpy(cgay)
m=0 m=0
o0 (oo}
- pmHm(Cyax) + > pmbm>>}»
o m=0 OOrn:O
ST opTe, = e Y —l—pS’l{u‘JK (S( — > p™Hp(azby)
m=0

m=0
— 2 p"Hm(aybs) + mzzjopm‘/’m)) }

m=0
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Comparing the coefficients of same powers of p, we have

P’ ag =€V, p¥: bg=e"Y, p¥: cog=e ",
pliay =871 {u*(S[=Ho(bzcy) + Ho(bycx) — ao])}
[=bo,w o,y + bo,y o,z — ao])}

Il
|
-
—~
<
Q
—
)

p b =S H{u(S[-Ho(czay) — Ho(cyaz) + bo])}
= 8_1 {UQ(S[—CO@ ag,y — Co,y A0,z + bO])}

o

=e* F((Z-‘,—l)’
phicr = _15 {u*([=Ho(azby) — Ho(aybz) + co])}
=S {u ( [ o,z bO,y - aO,y b07w + CO])}
— e %t
F(a+1)

p?iag =S {u(S[—Hi(bycy) + Hi(bycy) — ai])}
=8t {UQ(S[—bO,;L- Cly — wa Co,y + bo’y Cl,z + b17y Co,x — al])}

_ ex+y t20<
T(2a+1)’

p? by = ST {u(S[-Hi(ezay) — Hilcyaz) + bi])}
=8§! {u‘lgS[—co’z A1,y — C1,3 00,y — Co,y Q1,0 — C1,y G0,z + b1])}
=e' F(Qta-ﬁ-l)’
p? e = ST H{u(S[-Hi(azby) — Hi(ayby) + c1])}
=8 {u( 2[ 0,2 b1,y — a1,2 b0,y — @0,y b1x — a1,y box + 1))}
F(2a+1)’

— e—ac+

pria, =81 {ua(s[_gg—l(bwcy) + Hy—1(bycs) — an-1])}
:( l)n z+y t

I'(na+1)>
p =8~ {u ( [ anl(cway) - anl(cyaa:) + bnfl])}’
(54) T—y e
=e I'(na+1)?
P ien =S H{u(S[-H,o 1(azby) — Hy—1(ayby) + cn-1])}
_ e_x"" e
T'(na+1)"

The series solution of (4.1) with the initial conditions (4.2) is, therefore,

found to be given as follows:

a(z,t) = ag(w,t) + i::l am(x,t),
(5.5) bz, 1) = bo(x, 1) + f_fl bon (2, 1),
c(z,t) = co(z,t) + §1 em(z,t).

In particular, setting @ = 1 in (5.5), the solution is seen to converge to the

exact solution:

a(z,t) ="t bz, t) =" VT and  c(z,t) = e YT
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6. Use of the HASTM

Here we apply the HASTM to the system (4.1) subject to the initial condition
(4.2).
In view of the result in Section 5, we may take the initial guess as follows:

(6.1) ag =€V, by=e*"Y, and ¢y =e Y.
As in Section 5, we then obtain the same system as in (5.1):

Sla] = "V + u*S[—bycy + byc, — al,
(6.2) S[b] = e* Y + u*S[—cpay — cya, +b],
Sle] = e TV + u*S[—azb, — ayby + .

We define the involved nonlinear operator as follows:

N = S8[01(z,y, t;9)] — €Y +u®(S[02(z, ¥, t; ) 03(x, ¥, 5 q)y
_62(1" Y, t; Q)y63(xa Y, t; Q)a: + 61 (.’L‘, Y, t; Q)] )a
N? = S[ba2(z,y,t59)] — " Y + u® (S[03(, .t 9z 51(95 Y, t:q)y

6.3
(6:3) 185(2,y £ 0)y81 (2 51 £ 0)a — 622, 0, £ ),
N3 = 8[ds(z,y,t;q)] — e + u*(S[01 (x, y,t @)ab2(z,y,t5q)y
+61(xayat7Q) 2(‘/1; y,t q _63(‘1" yvt q)])a
where

N7 = NP1 (,y, 65 9), 2(2, 4, 15.0), 03 (2,9, 159)] (=1, 2, 3).

Then the mt"-order deformation equation is given by

S [am (xvyat) - Xmam—l(x7y7t)] = hRLm[mE:l’ Zjl
i3
(6.4) 8 o (2.:1) = Xmbm-1(,4,)] = R2m[ @ . b . €

Slem (@,9,1) = XmCm—1(z,y,t)] = hR&m[?E_) O l

v b

n—1 m—1 m-—1 ’

where
— —
Rlvm[ma 1 b 1 mc 1] - S[am—l] - (1 - Xm) erty
1"
[m— m—1
+u® S _ z aCm—1—i,y — Z bi,y Cm—1—i,x + am1:|) ’
N ;>z:0 =0
R2,m[ a b ) C ] = S[bmfl] - (1 - Xm) ew—y
m—1 m—1 m— 1
(65) [m—1 m—1
_|_uo¢ S Ci,x Am—1—i,y + Z Ciy Am—1—i,x — an—l:l) )
L i=0 =0
=
Raml @0 b . ¢ ]=8lemo] = (1= xm)e "
m—1 m—1 m—1
m— —1
+UQ<S Z 1zm 12y+ azybm 1zmcm—1:|>~
L i=0 i=0
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Taking the inverse Sumudu transform on each equation in (6.4), we have

N
m (Ly,f) = X'mam—l(t) + hS—1 {Rl’m[mzf 111’ mz)l]} s
(6.6) b (2,9, 8) = Xmbm—1(t) + S " {Rom[ d , b, ¢ ]V,

m—1 m—1 m—1
— —

-
Cm (mvyat):chmfl(t)'f'ﬁS_l 7?{’),m[ a, b, c ]

m—1 m—1 m—1

Solving the above system (6.6), we get the following results:

ag =€V, bg=e""Y, cyg=e "1,
—h z+y by = —het Y—— = _h —zty___ 7 .
M= Parly M © Tlar1l “ © T+l
(1 + h)hexﬂf oc+1) + h2e*ty (2oc+1)
b —(1+ h)he®~ yr( =) + h2e Y 71"(204-&—1)’
—x t —x 2
(1 + ﬁ)ﬁe YL F( ) + h2 ty F(2a+1)’
(6.7)
23 “ 2 x 3 x 3«
az = (1+ h)“he +ym +2(1+ h)he™ F(Zta—',-l) + 1™ ey
2 1 2a 3 3a
by = —(1+ h)*he” Y (QH) +2(1+ WA e Y g — B e Y rgarDy

t2a t3a

e = —(1+1)2he” ™M el + 2(1 + WP M oy — BPe™ ™V ey

and so on. Likewise the rest of the components can be obtained. Thus the
approximate series solutions can be given by

a(@.9.0) = ao(w..) + 3 an(r.9.0),
(6.5) b .t) = bofa.y.6) + 32 bu@.9.0),

1

8 [

C('ralbt) :CO(Ivya )+ m(xay7t)'
m=1

Setting i = —1 in the solution system (6.8), it converts to the series solution
in the HPSTM. Setting A = —1 and « = 1 in the solution system (6.8) is seen
to converge to the exact solution

a(z,y,t) ="V b(a,y,t) = eV c(m,y,t) = e TV

It is easy to see that b(z,y,t) and c(z,y,t) for x = y give the same series
solution for any value ¢. For this reason, we present two-dimensional graphs
for b = c¢. The graphical representations show that low-order approximate
HPSTM and HASTM solutions lead to high accuracy. Here we use only 4th
order approximations for solution simulation.
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FIGURE 1. The behaviour of the exact solution a(z,y,t) at

y = 0.5 w.r.t. = and ¢.
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FIGURE 2. The behaviour of the HPSTM and HASTM (h

—1) solutions a(x,y,t) at @ =1 and y = 0.5 w.r.t. = and ¢.
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Exact sohution

FIGURE 4. The behaviour of the exact solution b(z,y,t) at
y =0.5 w.r.t. x and ¢.

FIGURE 5. The behaviour of the HPSTM and HASTM (h =
—1) solutions b(x,y,t) at « =1 and y = 0.5 w.r.t. = and ¢.
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FIGURE 6. The comparison between of the exact, HPSTM and
HASTM (h = —1) solutions b(x,y,t) at o = 0.95 and y = 0.5
w.r.t. x and t.
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Exact solution

FIGURE 7. The behaviour of the exact solution ¢(x,y,t) at
y=0.5 w.r.t. x and ¢.

HPSTM (HASTM, 2 =-1)

FIGURE 8. The behaviour of the HPSTM and HASTM (h =
—1) solutions ¢(z,y,t) at « =1 and y = 0.5 w.r.t. z and ¢.

FIGURE 9. The comparison between of the HPSTM and
HASTM (h = —1) solutions ¢(x,y,t) at « = 0.85 and y = 0.5
w.r.t. x and t.



1224 J. CHOI, D. KUMAR, J. SINGH, AND R. SWROOP

=1, 095, 085, 075, 065

HPSTM (HASTM, # =-1)
g 02 04 %6 0% 1

F1Gure 10. Plots of HPSTM and HASTM (A = —1) solutions
a(x,y,t) vs. t at x =y = 0.5 for different values of «.

FIGURE 11. Plots of HPSTM and HASTM (A = —1) solutions
b(x,y,t) = c(z,y,t) vs. t at © =y = 0.5 for different values of
a.
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FIGURE 12. Plots of HASTM solution a(x,y,t) vs. h at x =
y = 0.5 and t = 0.005 for different values of a.
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FIGURE 13. Plots of HASTM solution b(x,y,t) = ¢(z,y,t) vs.
hat x =y = 0.5 and ¢t = 0.005 for different values of a.

7. Numerical results and discussions

Figs. 1-3 show the comparison between exact, HPSTM and HASTM (h =
—1) solutions a(z,y,t) of the system (4.1) with different values « at y = 0.5.
Figs. 4-6 present the comparison between exact, HPSTM and HASTM (A =
—1) solutions b(x,y,t) of the system (4.1) with different values a at y = 0.5.
Figs. 7-9 depict the comparison between exact, HPSTM (A = —1) and HASTM
solutions ¢(z, y,t) of the system (4.1) with different values « at y = 0.5.

From Figs. 1-9, we can see that results obtained by the proposed methods
are in a very good agreement with the exact solution.

Fig. 10 shows the comparative behavior of the 4th order HPSTM and HASTM
(h = —1) approximate solutions a(z,y,t) versus ¢t of the system (4.1) at
x = y = 0.5 with different order a. Fig. 11 shows the comparative behav-
ior of the 4th order HPSTM and HASTM (h = —1) approximate solutions
b(x,y,t) = c(x,y,t) of the system (4.1) at x = y = 0.5 for a time ¢ with dif-
ferent order . Fig. 12 depicts the validity of absolute convergence range of
h curve for solution a(z,y,t) and Fig. 13 represents the validity of absolute
convergence range of 7 curve for solution b(x,y,t) = c(z,y,t).

In Figs. 12 and 13, solid line represents 4th order and dash dot line represents
2nd order HASTM approximation at x = y = 0.5, ¢ = 0.005 for different order
a of the system (4.1) and show that the valid range of convergence and the
horizontal line segments show the absolute convergence range. Fig. 12 reveals
that the valid range of i is —1.986 < h < 0 for a(z,y,t). Fig. 13 shows that the
valid range of /i is —2.01 < h < 0 for b(x,y,t) = ¢(z,y,t). It is obvious that the
middle point of A-curves interval, i.e., h = —1 is an appropriate selection, at the
point of which the numerical solution converges to series solution of HPSTM
for standard motion as well as Brownian motions.
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Concluding remarks

In our investigation here, our choice to make use of the Sumudu transform
instead of the classical Laplace transform is prompted by the various compu-
tations considered here which happen to be much simpler (see also [48]). It
may be carefully asserted that both the methods HPSTM and HASTM give
series solutions, which converge rapidly, and require less computational work,
and provide high accurate results for systems of nonlinear equations.

Here only fourth order approximation in solution series is used for numerical
simulation. A diagrammatical illustration of convergence control parameter #,
arising in HASTM iteration, can provide multiple options in series solution with
very small absolute error compared to HPSTM and other existing traditional
perturbation methods in same term iterations. The proposed techniques may
be more reliable than analytical techniques used in their respective coupling.

Acknowledgments. The authors would like to express their deep-felt thanks
for the reviewer’s useful comments with an introduction of (very recently pre-
sented) new fractional derivatives.
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