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ABSTRACT

The problem regarding nonlinear
systems has come to occupy an important
position. In order to solve a nonlinear
problem we have methods of linearization

which are developed through linear
approximation to adapt iinear system
theories. In this paper we present a
formal linearization of nonilinear

systems based on the discrete-Fourier

transform (D.F.T.).
1. INTRODUCTION

recent years research about
linearization has been done. And many
results have been published but their
methods are not practical. Because they
have some problems like 1low accuracy
of approximation in wide region. Here we
present a formal linearization of
nonlinear systems based on the D.F.T.

In

The excellent characteristics of this
linearization are having high accuracy
of approximation and simple
transformation using D.F.T. for any
nonlinear systems.

Composing ain augmented vector
space we can transform nonlinear

system into formal linear system on the
function space. Here we introduce the
Trigonometric functions for composing,
so as to be made use of D.F.T. with
simplicity and high accuracy.
Through the formal linearization we can
adapt the linear system theory to the
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given nonlinear system
solution by the inversion.
Concretely the outline of this
method in a scalar case is as follows.
Let x(t)=f(x(t))

and get the

be a given nonlinear

system and let f be a real-valued
function defined on R and x be a
state variable. A formal

linearization function introduced here

is g (y(t))=¢ (y(t))-F (y()) where

P (y)= (sny,msy,sn2y,ws2v, -, s (n-1)y,0s(n-1)y) ~
= EE1.;2,33.3}, ",$2<w1>

F(y) so that the
linear system is obtained.

3T
is expanded by D.F.T.
6 (y)=A0 (y)

The inversion is carried out by using
$:. and ¢..
This paper also propose examples

of adapting this method to scalar and
vector systems. Numerical examples show
satisfactory results. As an application
of this method we propose an observer
for a nonlinear system too.

2. A FORMAL LINEARIZATION
OF A SCALAR SYSTEM

We consider a scalar system. Assume
that a nonlinear system is given as

x(t)=f(x(t)) ( -=d/dt)
x(0)=x0 € [0, 0 ]CR

where X is a state variable defined on

Z, (2.1)

[0,2] , R is the set of all real-valued,
f 1is a nonlinear square integrable
function with the first continuous
derivative.



We here define a formal 1linearization
function

# (y(£))=F (y(£))-F (y(0)) (2.2)
where
@ (y)= (sny,msy,sn2y,ms2y, - -+ ,sin(n-1)y, s (n-1)y) T

=(@1,.82,83, 04, -,
$2m-n-1,P2m-1) T, (2.3)
The #(y) is called as the
linearization function.
We transform the system £, into a linear
system
Z:: #(y)=As(Y) ,
n
¢(Y(0))=¢(Yo).Y(0)=Txo

nth-order

(2.4)

as follows.
To expand B}(y) in Fourier series on
[0,27z] , we introduce a new variable

y(t)%’ix(t). y(tyeflo, 2z ], (2.5)

By this equation,
transformed as

Eq.(2.1) is

. 2r ¢
T4 y()=g(y(t)). (e&(y)=— £(—y)) (2.6)
[ 2n
From Egs.(2.3) and (2.6),
% o= aey=Canryyy
b or-1(¥ —&-tsml’.‘y~ dtSlnI‘y y
(2.7

=r(wsry)g(y)=G2,-1(y).

~ d d .
®2r (y)=5tmsry=(a~tmsry)y=-r(sinry)g(y)=Gz,(y).

(2.8)
Expanding each G, (r=1,2, :-* ,2(n-1)) by
D.F.T., we have
~ »-1 ar 0
#:(y)=% (@r 2x-1snkytar 2emsky)+
k=1
where (2.9)
2 N-1
ar 2x-1== 2 Gr(y:)snky:
N i-0
2 N-t 27
a: ox=— 2 G, (yi)mskys, ¥:1= Tl , N=2n-1.
i=0
From Eq.(2.3), the nth-order linear

system with respect to ; is obtained as

F(y)=AF (y)4b (2.10)
where
A=(ai 1 a2 * X1 N-1
az 1 a2z 2 © a2 N-t
@AN-1 1 @N-1 2 "°" @N-1 N-1
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X1 0 A2 o
b= [(——
2

aAN-1 0
2 .o 2 J T‘
Another approximate equation without the
constant term is obtained with respect
to ¢(y) as
8 (y)=8 ()-8 (y(20))=(AF (y)4b) (2.11)
~(AS (y(®))40)=A(F (v)-F (y(0))=A 4 (5).
Thus the Eq.(2.4) is
obtained.

The inverse transformation is as
follows. From Eq.(2.4), ¢ is derived and
then ¢ is obtained from Eq.(2.2). y(t)
is evaluated by g, and ¢, as

linear system

y=as 29 2 (0% 1)
=27 - ws '@ 2 (%.<0). (2.12)
Then the solution of the nonlinear

system x(t) is acquired from Eq.(2.5).
In the next, we are going to deal
with a vector system.

3. A FORMAL LINEARIZATION
OF A VECTOR SYSTEM

For the sake of simplicity we are
going to deal only with a system with
two variables. However, from what
follows it will be obvious that this
restriction is merely simplicity and
that all considerations can be similarly
expanded in the case of systems with
more variables.

The nonlinear system is given as

Ty o x(t)=f(x(t)) ( -=d/dt) (3.1)
where

x(t)=[x1(t),x2(t)]7
€[ 011,08 12I1%[ 021,80 2,]CR?
fx0=[f1(x),f2(x)]T €CN L2,

We here define the
linearization function as

g (y(t))=F (y(£))-B (y(0))
where

nth-order

(3.2)

F(y)= Cosyz,snys,82y2,502¥2, -,
ws (n-1)y2,sn(n-1)y2,
08y 1,008Y2008Y1,8NY2008Y1,*°,
ws(n-1)y20sy1,sn(n-1)y208y1,
siny1,8y2sinys,sny2snyq, - - -
os{n-1)y2say1,sin(n-1)yzsinyq, -«
-+ -,sin(n-1)y1,wsy2zsin(n-1)ys, sny2sn{n-1)y,
<o+, sin(n-1)yzsin(n-1)y,) T
=(,¢\5'1 ’52 Es ’9\5,4 ztzn—nz—JT-
Next we introduce a new variable



mi-x;(t) (t)

a7, ya(ry=R2Rtt

y1(O)s(———~ +Dmr (3.3)
P1 P2
where
Dy=[0,2721x [0,27 ]
1144012 Q21+ 82
ny= ———— M= —————
2 2
Q 117 Q 12 Q 217 Q 22
p1= - pi=
2 2
By these equations Eq.(3.1) is exchanged
with
25 i y(t)=a(y(t)), g=(g:,g2]7 (3.4)
which 1is similar to Eq.(2.6). From
EqQs.(3.2) and (3.4),
~ 38c. ddc. a9 aw
Eu(y)=— yi+ ‘ Y2=—“K g1t B g2
ayy ay, ay, dyz
=Fx(y1,¥2), (3.5)
Expanding each PF¢(K=1,2, - ,(2n-1)2%-1)
with respect to ¥: and y;, by D.F.T., we
have
< 1 af ot ¢ X K 3
¢K(Y)=£('_Z_ +2[8.o yoos iy 2tbo 1Sinl)’2] (3.6)
1=1

n-1 K

ar o K 5 K .
+ 2 {(="+Z[ar 1msiyotby 1sniyz])mery,
r=1 1=1

n-1

% n-loy . x .
+ (— +Z [cr swsiyz+dy 1sniyz])smryq}

i=1

where
K 2 N-1 2 N-1
ar 17= 2 [ ZFx(¥1a,¥25)s8r¥1n Josiya,
N i=Q N m=0
K 2 N-1 2 N-1
br s== [- ZFx(¥in,¥Y2s)08Ty1m Jsmiyz,
N 3=0 N m=0
2 N-t g N-1 .
Cr 15— X [' EFK(Y1myY2J)SinTY1m ]CDSiYQ.S
N 5:0 N a0
K 2 N-1 2 N-1
dy 1= Z [- ZF(yim,¥25)snr¥1m lsiniyz,
N =0 N m=0
2 2r
Y1m='i‘m, YZJ:'E‘J; N=2n-1,
From Eq.(3.2), the nth-order 1linear

system with respect to g is obtained as

¥ (9)=AF (3)4. .7

From Eq.(3.2), we have the linear system
without the constant term with respect
to ¢ as

$(9)=F (1)-F (y(®))=A 8 (v). (3.8)

Thus the nonlinear system (Eq.(3.1)) is
transformed into linear system
(Eq.(3.8)). The inverse transformation

is carried out in a similar way in the
case of a scalar system. Y: is obtained
fromgyand P, y, is from ¢, and @ o.
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Then we can get solutions X1 and x:
from Eq.(3.3).
4. OBSERVER
In this section we compose a

nonlinear observer as an application of
the 1linearization. Here we consider a
scalar system, for a vector system is
straightforward.

Assume that a nonlinear system with

measurement 1is given as the same as
Eq.(2.1) Dynamic equation is

x(t)=f(x(t)), x(0Yelo,0]. (4.0
Measurement equation is

2(t)=h(x(t) (4.2)
where Z is real-valued measurement
datum, and h is a nonlinear function
which satisfies with

N-1

% h(=1)=0.

i=0Q N
By the way of section 2 f(x) is expanded

D.F.T. so that the linear equation
(2.4) is derived as

by
of

é(y)=A¢ (¥). (4.3)

In a similar way, h(x) is also expanded

by D.F.T. so that we have

I(y)=B¢ (y) (4.4)
where

B=(8., B B ) T

2Nt 2 0 2m

Bk=- T —h(—yi)ex(y), yi=—i.

Ni-=o ¢ 2 N

The linear observer theory® is applied
to the 1linear system Egs.(4.3) and

(4.4). Identity observer, for example,
is

B (L)=A % (L)+E(Z(L-BF (). (4.5)

K 1is appropriately chosen so that all
eigenvalues of the matrix (A-KB) have
negative real parts. The solution of
this observer is carried out as shown at
the end of section 2.

5. NUMERICAL EXAMPLES

We are going to illustrate the use
of this method. Two examples are shown
in this section. One is of the scalar
system and the other is of the vector
system.



5.1 SCALAR SYSTEM

Given a nonlinear scalar system as
S or x(t)=x(t)+x2(t) (5.1)
x(0)=x0 € [0, § 1€ R, (x0=0.8, £ =0.9),

From Eq.(2.11), the linear system
respect to [ is obtained. For the
purpose of comparison, we solve the
given nonlinear equation (5.1) and the
linear equation (2.11). In this case let
the order of ] be parameter.
The coefficients of Eq.(2.11) is
automatically evaluated as n is given.

Fig.1 shows the trajectories of the
results by computer. Q(t) is of the
linearized system where n=4, 6, 11 and
21. x(t) 1is the true value from the
original equation (5.1). Fig.2 is the
integration of the square error

t
JW)=§ (x(T)X(TNANT.

o]

(5.2)

5.2 VECTOR SYSTEM

We show the example of an electric
power system for a nonlinear system with
two variables

M& +D & +Pensin & =Py (5.3)
The expressions for X: and X in terms
of state variables are given by

x1(t)=6 (t)-6 () (5.4)

x2(t)=8 (1),

Eq.(5.3) is written by X1 and X2 as

x1(t)=x2(t) (5.5)

f

x2(t)=assin(x1(t)+8 (00))+arXo4a0

x(L) €0 1,0 12]%[ Q21,0 22]
=[-0.41,0.1]x[-0.8,1.0]CR?

x1{0)=8 (0)-8 (00)=0.6-8 (o0)
x2(0)=6 (0)=0.2

where

M=0.0265, D=0.005, Pen=1.0, P(.=0.8,

a0=Psn/M, a1=-Pem/M, ar=-D/M,

g (°°)=Sin'1<Pin/Pem).
From Eq.(3.8), the linear system respect

to ¢ is obtained. Figs.3 and 4 show the
trajectories of %:(t) and %£.(t) when n
is parameter (n=2,3,4). Figs.5 and 6
show the 1integrations of the square
error
t
Ji(t)=§ (xi(T)-Xi(T))%dT (5.8)
[o]
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t

J2(t)=§ (xo(T)-%2{7))dT (5.7
[0

6. CONCLUSION

Nonlinear systems are transformed
into linear systems formally. Numerical
examples show that the accuracy of this
method improved as n increases.

A nonlinear observer also proposed
as an application of this method.
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