• Title/Summary/Keyword: Nonlinear time series regression models.

Search Result 13, Processing Time 0.027 seconds

Asymmetric Least Squares Estimation for A Nonlinear Time Series Regression Model

  • Kim, Tae Soo;Kim, Hae Kyoung;Yoon, Jin Hee
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.3
    • /
    • pp.633-641
    • /
    • 2001
  • The least squares method is usually applied when estimating the parameters in the regression models. However the least square estimator is not very efficient when the distribution of the error is skewed. In this paper, we propose the asymmetric least square estimator for a particular nonlinear time series regression model, and give the simple and practical sufficient conditions for the strong consistency of the estimators.

  • PDF

Kernel-Based Fuzzy Regression Machine For Predicting Turbulent Flows

  • Hong, Dug-Hun;Hwang, Chang-Ha
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2004.04a
    • /
    • pp.91-101
    • /
    • 2004
  • The turbulent flow is of fundamental interest because the conservation equations for thermodynamics, mass and momentum are linked together. This turbulent flow consists of some coherent time- and space-organized vortical structures. Research has already shown that some dynamic systems and experimental models still cannot provide a good nonlinear analysis of turbulent time series. In the real turbulent flow, very complicated nonlinear behaviors, which are affected by many vague factors are present. In this paper, a kernel-based machine for fuzzy nonlinear regression analysis is proposed to predict the nonlinear time series of turbulent flows. In order to show the practicality and usefulness of this model, we present an example of predicting the near-wall turbulence time series as a verifiable model and compare with fuzzy piecewise regression. The results of practical applications show that the proposed method is appropriate and appears to be useful in nonlinear analysis and in fuzzy environments to predict the turbulence time series.

  • PDF

EVALUATION OF PARAMETER ESTIMATION METHODS FOR NONLINEAR TIME SERIES REGRESSION MODELS

  • Kim, Tae-Soo;Ahn, Jung-Ho
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.315-326
    • /
    • 2009
  • The unknown parameters in regression models are usually estimated by using various existing methods. There are several existing methods, such as the least squares method, which is the most common one, the least absolute deviation method, the regression quantile method, and the asymmetric least squares method. For the nonlinear time series regression models, which do not satisfy the general conditions, we will compare them in two ways: 1) a theoretical comparison in the asymptotic sense and 2) an empirical comparison using Monte Carlo simulation for a small sample size.

  • PDF

A Study on the Support Vector Machine Based Fuzzy Time Series Model

  • Seok, Kyung-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.3
    • /
    • pp.821-830
    • /
    • 2006
  • This paper develops support vector based fuzzy linear and nonlinear regression models and applies it to forecasting the exchange rate. We use the result of Tanaka(1982, 1987) for crisp input and output. The model makes it possible to forecast the best and worst possible situation based on fewer than 50 observations. We show that the developed model is good through real data.

  • PDF

Modeling of Hydrologic Time Series using Stochastic Neural Networks Approach (추계학적 신경망 접근법을 이용한 수문학적 시계열의 모형화)

  • Kim, Seong-Won;Kim, Jeong-Heon;Park, Gi-Beom
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1346-1349
    • /
    • 2010
  • The goal of this research is to apply the neural networks models for the disaggregation of the pan evaporation (PE) data, Republic of Korea. The neural networks models consist of generalized regression neural networks model (GRNNM) and multilayer perceptron neural networks model (MLP-NNM), respectively. The disaggregation means that the yearly PE data divides into the monthly PE data. And, for the performances of the neural networks models, they are composed of training and test performances, respectively. The training and test performances consist of the historic, the generated, and the mixed data, respectively. From this research, we evaluate the impact of GRNNM and MLP-NNM for the disaggregation of the nonlinear time series data. We should, furthermore, construct the credible data of the monthly PE from the disaggregation of the yearly PE data, and can suggest the methodology for the irrigation and drainage networks system.

  • PDF

Corporate Default Prediction Model Using Deep Learning Time Series Algorithm, RNN and LSTM (딥러닝 시계열 알고리즘 적용한 기업부도예측모형 유용성 검증)

  • Cha, Sungjae;Kang, Jungseok
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.1-32
    • /
    • 2018
  • In addition to stakeholders including managers, employees, creditors, and investors of bankrupt companies, corporate defaults have a ripple effect on the local and national economy. Before the Asian financial crisis, the Korean government only analyzed SMEs and tried to improve the forecasting power of a default prediction model, rather than developing various corporate default models. As a result, even large corporations called 'chaebol enterprises' become bankrupt. Even after that, the analysis of past corporate defaults has been focused on specific variables, and when the government restructured immediately after the global financial crisis, they only focused on certain main variables such as 'debt ratio'. A multifaceted study of corporate default prediction models is essential to ensure diverse interests, to avoid situations like the 'Lehman Brothers Case' of the global financial crisis, to avoid total collapse in a single moment. The key variables used in corporate defaults vary over time. This is confirmed by Beaver (1967, 1968) and Altman's (1968) analysis that Deakins'(1972) study shows that the major factors affecting corporate failure have changed. In Grice's (2001) study, the importance of predictive variables was also found through Zmijewski's (1984) and Ohlson's (1980) models. However, the studies that have been carried out in the past use static models. Most of them do not consider the changes that occur in the course of time. Therefore, in order to construct consistent prediction models, it is necessary to compensate the time-dependent bias by means of a time series analysis algorithm reflecting dynamic change. Based on the global financial crisis, which has had a significant impact on Korea, this study is conducted using 10 years of annual corporate data from 2000 to 2009. Data are divided into training data, validation data, and test data respectively, and are divided into 7, 2, and 1 years respectively. In order to construct a consistent bankruptcy model in the flow of time change, we first train a time series deep learning algorithm model using the data before the financial crisis (2000~2006). The parameter tuning of the existing model and the deep learning time series algorithm is conducted with validation data including the financial crisis period (2007~2008). As a result, we construct a model that shows similar pattern to the results of the learning data and shows excellent prediction power. After that, each bankruptcy prediction model is restructured by integrating the learning data and validation data again (2000 ~ 2008), applying the optimal parameters as in the previous validation. Finally, each corporate default prediction model is evaluated and compared using test data (2009) based on the trained models over nine years. Then, the usefulness of the corporate default prediction model based on the deep learning time series algorithm is proved. In addition, by adding the Lasso regression analysis to the existing methods (multiple discriminant analysis, logit model) which select the variables, it is proved that the deep learning time series algorithm model based on the three bundles of variables is useful for robust corporate default prediction. The definition of bankruptcy used is the same as that of Lee (2015). Independent variables include financial information such as financial ratios used in previous studies. Multivariate discriminant analysis, logit model, and Lasso regression model are used to select the optimal variable group. The influence of the Multivariate discriminant analysis model proposed by Altman (1968), the Logit model proposed by Ohlson (1980), the non-time series machine learning algorithms, and the deep learning time series algorithms are compared. In the case of corporate data, there are limitations of 'nonlinear variables', 'multi-collinearity' of variables, and 'lack of data'. While the logit model is nonlinear, the Lasso regression model solves the multi-collinearity problem, and the deep learning time series algorithm using the variable data generation method complements the lack of data. Big Data Technology, a leading technology in the future, is moving from simple human analysis, to automated AI analysis, and finally towards future intertwined AI applications. Although the study of the corporate default prediction model using the time series algorithm is still in its early stages, deep learning algorithm is much faster than regression analysis at corporate default prediction modeling. Also, it is more effective on prediction power. Through the Fourth Industrial Revolution, the current government and other overseas governments are working hard to integrate the system in everyday life of their nation and society. Yet the field of deep learning time series research for the financial industry is still insufficient. This is an initial study on deep learning time series algorithm analysis of corporate defaults. Therefore it is hoped that it will be used as a comparative analysis data for non-specialists who start a study combining financial data and deep learning time series algorithm.

Learning the Covariance Dynamics of a Large-Scale Environment for Informative Path Planning of Unmanned Aerial Vehicle Sensors

  • Park, Soo-Ho;Choi, Han-Lim;Roy, Nicholas;How, Jonathan P.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.326-337
    • /
    • 2010
  • This work addresses problems regarding trajectory planning for unmanned aerial vehicle sensors. Such sensors are used for taking measurements of large nonlinear systems. The sensor investigations presented here entails methods for improving estimations and predictions of large nonlinear systems. Thoroughly understanding the global system state typically requires probabilistic state estimation. Thus, in order to meet this requirement, the goal is to find trajectories such that the measurements along each trajectory minimize the expected error of the predicted state of the system. The considerable nonlinearity of the dynamics governing these systems necessitates the use of computationally costly Monte-Carlo estimation techniques, which are needed to update the state distribution over time. This computational burden renders planning to be infeasible since the search process must calculate the covariance of the posterior state estimate for each candidate path. To resolve this challenge, this work proposes to replace the computationally intensive numerical prediction process with an approximate covariance dynamics model learned using a nonlinear time-series regression. The use of autoregressive time-series featuring a regularized least squares algorithm facilitates the learning of accurate and efficient parametric models. The learned covariance dynamics are demonstrated to outperform other approximation strategies, such as linearization and partial ensemble propagation, when used for trajectory optimization, in terms of accuracy and speed, with examples of simplified weather forecasting.

Nonlinear approach to modeling heteroscedasticity in transfer function analysis (시계열 전이함수분석 이분산성의 비선형 모형화)

  • 황선영;김순영;이성덕
    • The Korean Journal of Applied Statistics
    • /
    • v.15 no.2
    • /
    • pp.311-321
    • /
    • 2002
  • Transfer function model(TFM) capturings conditional heteroscedastic pattern is introduced to analyze stochastic regression relationship between the two time series. Nonlinear ARCH concept is incorporated into the TFM via threshold ARCH and beta- ARCH models. Steps for statistical analysis of the proposed model are explained along the lines of the Box & Jenkins(1976, ch. 10). For illustration, dynamic analysis between KOSPI and NASDAQ is conducted from which it is seen that threshold ARCH performs the best.

Development of Temporal Disaggregation Model using Neural Networks 1. Application of the Historic Data (신경망모형을 이용한 시간적 분해모형의 개발 1. 실측자료의 적용)

  • Kim, Seong-Won;Kim, Jeong-Heon;Park, Gi-Beom
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1207-1210
    • /
    • 2009
  • The goal of this research is to apply the neural networks models for the disaggregation of the pan evaporation (PE) data, Republic of Korea. The neural networks models consist of generalized regression neural networks model (GRNNM) and multilayer perceptron neural networks model (MLP-NNM), respectively. The disaggregation means that the yearly PE data divides into the monthly PE data. And, for the performances of the neural networks models, they are composed of training and test performances, respectively. The training and test performances consist of the only historic data, respectively. From this research, we evaluate the impact of GRNNM and MLP-NNM for the disaggregation of the nonlinear time series data. We should, furthermore, construct the credible data of the monthly PE data from the disaggregation of the yearly PE data, and can suggest the methodology for the irrigation and drainage networks system.

  • PDF

Development of Temporal Disaggregation Model using Neural Networks 3. Application of the Mixed Data (신경망모형을 이용한 시간적 분해모형의 개발 3. 혼합자료의 적용)

  • Kim, Seong-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1215-1218
    • /
    • 2009
  • The goal of this research is to apply the neural networks models for the disaggregation of the pan evaporation (PE) data, Republic of Korea. The neural networks models consist of generalized regression neural networks model (GRNNM) and multilayer perceptron neural networks model (MLP-NNM), respectively. The disaggregation means that the yearly PE data divides into the monthly PE data. And, for the performances of the neural networks models, they are composed of training and test performances, respectively. The training data consist of the mixed data The mixed data involves the historic data and the generated data using PARMA (1,1). And, the testing data consist of the only historic data, respectively. From this research, we evaluate the impact of GRNNM and MLP-NNM for the disaggregation of the nonlinear time series data. We should, furthermore, construct the credible data of the monthly PE data from the disaggregation of the yearly PE data, and can suggest the methodology for the irrigation and drainage networks system.

  • PDF