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EVALUATION OF PARAMETER ESTIMATION METHODS
FOR NONLINEAR TIME SERIES REGRESSION MODELS

TAE Soo Kim* AND JUNG-HO AHN

ABSTRACT. The unknown parameters in regression models are usually estimated
by using various existing methods. There are several existing methods, such as
the least squares method, which is the most common one, the least absolute devi-
ation method, the regression quantile method, and the asymmetric least squares
method. For the nonlinear time series regression models, which do not satisfy the
general conditions, we will compare them in two ways: 1) a theoretical compar-
ison in the asymptotic sense and 2) an empirical comparison using Monte Carlo
simulation for a small sample size.
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1. Introduction

Generally, the nonlinear regression model is yz = f(z,00) + €, where ¢t =
1,2,---,T, and f(x,0) is a real valued nonlinear function defined on Rp1tP2
x; is a (1 X pa) observed vector; and the error terms e; are independent and iden-
tically distributed (i.i.d.) with finite variance. The parameter vector 6o, which is
interior point in a compact parameter space © C RP!, is unknown and to be es-
timated. Given the observation g, any vector fr in © minimizing the objective

T

function Sr(0) = Z(yt ~ f(z,6))? is called the least squares estimator (LSE)
=1

of By based on {y;}£_;. Jennrich (1969) first rigorously proved the existence of
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the LSE and showed the strong consistency and asymptotic normality of the
LSE with the several assumptions including the following: Fr(6,,62) converges
uniformly to a continuous function F(6y,6;) and Fr(6,62) = 0 if and only if
61 = 03, where Fr(61,02) = # Y (fe(61) — fi(62))%. Wu (1981) gave sufficient
conditions under which the LSE converges to 6 strongly. When the condition
of the above requirement of Fr is replaced by the following assumption : f(6)
are Lipschitz function on © and

sup POV =SB ar s 1100) - 160
01740, 101 — 02 |6—80]>6

for some § > 0 and for all ¢, where M is independent of ¢t and |61 — 62} is
the Euclidean distance between §; and #3. On the other hand, in spite of the
theoretical and practical merits, certain criticisms of the procedures based on
the least squares method in the past have been pointed to the robustness even
with a single outlier or a slight departure from the normality assurmption on the
errors. When the error distribution is heavy-tailed such as Laplace or Cauchy
distributed errors, the least squares method is deemed inadequate, and, au-
tomatically, the least absolute deviation estimator (LAD) which is defined as
follows has attracted considerable attention in the part of the robust regression
analysis. Given an observation y; any vector f7 in © minimizing the following
objective function

1T
Srf) = 7 >y — f(@,0)]
t=1

is called the LAD estimator of 6y based on {y:}I_,.

The concept of the periodicity in time series is of fundamental interest, since it
provides a mean for formalizing the notions of dependence or correlation between
adjacent points. In this paper, we think about a sum of sinusoidal components :

. ;
Y= Z{ATO cos(wyot) + Bro sin{wrot)} + €, (1.1

r=1
where 8y = (A10, Bio, w10, " -+ , Ag0, Bgo, wqo), and for g > 1, Apg, Bro are some

fixed unknown constants, wy is unknown frequency lying between 0 to 7 (1 <
r < ¢) and in this case the observed value z; means t.

But the above formula neither satisfies Jennrich (1969)’s assumptions nor Wu
(1981)’s Lipschitz type condition-the methods which are proposed by Jennrich
and Wu are not available. For this reason, Walker (1971) obtained the asymp-
totic properties of the approximate LSE. Hannan (1973) generalized the results
of the Walker. Hannan (1973) considered the case when ¢, is generated by a
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strictly stationary random variable process. Kundu (1993) and Kundu and Mi-
tra (1996) gave a direct proof of the strong consistency and asymptotic normality
and observed that the approximate LSE and the LSE are asymptotically equal.
And Oberhofer (1982) studied the weak consistency about the LAD estimators
with the assumptions from B1 to B6 in his paper. But the assumption B5 in
his paper is equivalent to the assumption of Jennrich (1969). And then using
the different aforementioned methods, the asymptotic properties of LAD of this
model is proved by T. S. Kim et al. (2000). But the LSE and LAD are inade-
quate for asymmetric model. In this case, the asymmetric model means that the
error’s distribution G(e;) satisfies G(0) # 3. Accordingly, we need a substitute
approach. Koenker, R and Bassett, G. (1978) introduced Regression Quantile
Estimator (RQE) and Whitney K. Newey and James L. Powell (1987) studied
the Asymmetric Least Squares (ALS) Estimator which is defined as follows. For
the nonlinear regression model, consider the next objective function, when 3 # %

and 0 < B <1, S7(6;8) = ¢ Z(pﬁ vt — f(zt,0)), where @g(N)is called a check
function which is defined by

[ B, A>0,
Ww_{ (B-1)A, A<O.

For the given observation y;, any vector 67(8) in © which minimizing the
objective function Sr(6;3) shall be called the RQE of 8y based on {y:}i ;.
Lastly, we consider another new objective function such as:

T
0 ﬁa = Z xt: 9))a (12)
where 7 is defined by 3 and ¢,(\)is called a check function which is defined by:
¢(>\)~{7)\2, A>0,
Tl a-122, a<o,

where 0 < 7 < 1.

For the given observation y;, any vector bp (8) in © which minimizes the
objective function St(6; 8, 7) is called the ALS estimator of 6 based on {y;}1_;.
Firstly, we studied the asymptotic properties of the four different estimators.
But in the practical phenomenon, we deal with a finite data set. So, they are
invalid and not adjusted in a small sample size. Then, using the Monte Carlo

simulation, we check out the validation of the above different estimators under
the various error distributions.
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2. The asymptotic results

Theorem 2.1. If O is the LSE of the non-linear time series regression model
(1.1) with the assumptions :

1) €; is distributed independently and identically with E{e;} = 0 and E{eZ} =
0% < 00,

2 - m
) lgr;o 1({:1;11 (T|wro wsoD 00,

then the LSE is a strongly canszstent estimator of 8y and (P, (01T), PQ(GQT), ,
P, (BQT)) converges in law N (quxl,a = ), where Pr(GTT) (\/_ (ATT— ro),

\/T(BrT - BTO)’ V TB(‘:JrT - W’rﬂ)), L= (Ers)?:qxliq; forr,s=1,2,---,q, and

(0, ifr#s,
1 BrO
2 0 4
Ers = 4 0 % —J:ro , ifr=s.
B’I'O _A’!'O A12.0 + B,,z‘o
. 4 4 6

Proof. For the detailed proof, see Walker (1971) and Kundu and Mitra (1996).
a

Theorem 2.2. If 6 is the LAD of the non-linear time series regression model
(1.1) with the same assumptions of Theorem 2.1, then the LAD estimator is

a strongly consistent estimator of 6y and (Py (51:1’), Pg(égT), ,Pq(éqT)) con-

verges in law N (quxl, where g(e;) is a continuous probability

1 -
wOrEE )

density function of €.
Proof. For the detailed proof, see T. S. Kim et al.(2000). O

Theorem 2.3. If é(ﬂ) is the RQE of the non-linear time series regression model
(1.1) with the same assumptions in Theorem 2.1, except F{e;} = 0 and with the
additional condition G(0) = 8, (0 < B(# 0.5) < 1), where G(e;) is a distribution
function of the error terms ¢;, then the RQFE is a strongly consistent estimator
of 6o and (Pl(élT(ﬂ)), Py(bar(B)), - Pq(éqT(ﬁ))) conwerges in zawzv(ogqxl,
pQ - B)
e TN
{9(0)}> )

Proof. For the detailed proof, see T. S. Kim et al. (2002). 0O
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First of all, for the case of ¢ = 1, we will consider the asymptotic prop-
erties of the ALS éT(ﬁ) = élT(ﬂ) = (AlTy-élT,alT) = (AT,BT,‘:)T) for 6y =
(A10, Bio,w10) = (Ao, Bo,wp) in a time series with stationary independent resid-
uals model (1.1).

Theorem 2.4. If Or(8) is the ALS estimator of the non-linear time series
regression model (1.1) with the same assumptions of Theorem 2.3 and q¢ = 1,
then the ALS is a strongly consistent estimator of 6y and Py(617(B)) converges

' (1-27)d+ 73?4+ p?) _ _ b
in law N <03q><1, Brrl-20) Y , where ¥ = X1, T = %’
0

w=E(e), b :/ zg(z)dz, d:/ z2g(x)dz.

Proof. Since Sr(6p; 3) defined in (1.2) is independent of § = 6; = (A1, By, w1),
the minimizer of Sp(6; 3) is equivalent to the minimizer of the new objective
function : Dy (8; 8) = S7(6; 3) — St (6o; B). Then, firstly, using the Kolmogorov’s
strong law of large numbers, we obtain Dz (6; 3) which uniformly converges to
TII_I)I;O E[D7(6; 8)]. Under the direct calculations, we know

. OE[Dr(6:8)] _ . o
P opan 2V PIPrA)]
is a positive matrix. It should be induced that Tlim E[Dr(6; )] has a unique

minimizer 6y in ©. But the above two facts are sufficient conditions for the strong
consistency (see White (1980), Lemma 2.2). Since Sr(6;3,7) is the minimum
when 6 = 67, an application of the mean value theorem gives :

(S7) 40 = (S7) 44(Ao — A1) + (ST) 45(Bo — Br) + (S1) a5 (wo — &1),
(S1)B, = (S1) 48(Ao — Ar) + (S1)85(Bo — Br) + (S7) 80y (w0 — 1),
(ST)wo = (S7)54(A0 — A7) + (S7)05(Bo — Br) + (S1)ee(wo — &1), -

_ 087 ((4, B,w);ﬁm‘)’ (Sr)ap = 02Sr((A, B,w); B, 1)
0A (Ao,Bowo) *~T/AB HABB

, etc., and we use generic notation (Ar, Br,or) for a point on the line

where (S7) 4,

’(Ao,Bo,wo)
joining (Ag, Bo,wo) and (/IT, E’T,&)T), so that

(Ar, Br,@r) = (Ao, Bo,wo) + (1 — 7)(Ar, Br,or) (0 < v < 1).
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The point (Ar, Br,@r) in (2.1) will, in general, not be the same, but to distin-
guish them would complicate the notation, and no ambiguity will arise by not
doing so. But (2.1) is replaced by the following :

(\/T(ST)AM \/T(ST)BO’ \/LT(ST)WO)
= - (\/T(AT — Ao), \/T(BT — Bo), \/TE((I)T — wo)) X WT,
where
(St)aa (St)as T Y(51)aw
Wr=| (Sr)sa (St)es  T7'(S1)Bo (2.2)
T Sr)oa T 'ST)os T *(ST)aw
On the other hand,

T
1
VT (S = —= 2T — I, coswot, 2.3
( T)Ao \/—T; !T { t<0}|6t 0 ( )
1 I
VT(Sr)g, = —= Y 2|7 — I\, sin wot, 2.4
( T)Bo \/T; | {t<0}|5t 0 ( )
1 1 &
— (ST = — Z 2|1 — I{6t<0}!et(A0tsinwot — Byt cos wot).
vT vT? A (2.5)
T b
The sum in (2.3) are of the form Z Uy, since E(e;) = pand 7 = ——,
t=1 2b—p
we have E(U;) = 0 and E(U?) = %[(1 —27)d + T3(0® + uz)} cos® wot. Let
T
BZ = ZVar(Utz), then we have B2 = 2[(1 —27)d+7%(0? + u2)] +0(1) < oo.

t=1
With the same process, we have the similar following results. In (2.4), we

T
have BZ = Z Var(U?) = 2[(1 —21)d +7%(0? + u2)] +0(1) < oo and in (2.5),

t=1
2y (43 + B)
Bf = ZVar(Utz) =2[(1 - 27)d + 7%(0? —|—,u2)]—03——9—— +0(1) < 0.
t=1 '

For all of the above cases, for any given € > 0, we get

T
1
pm BZ ;E[Utz v, |2eBr}] = 0.
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Using the Lindberg theorem, we see that vT(Sr) 4, and VT (Sr) s, converge
in law to N (O, 2[(1—271)d+1%0? + ;ﬂ)]) respectively, and \/LT(ST)W0 converges

2 2
in law to V (0, 2[(1 —27)d + 7%(0% + 'uz)] (Ag -*6— Bg)

For the limiting joint distribution we consider the random variable :
1
vT

where the §;(i = 1,2,3) are arbitrary real numbers. Now likewise (2.3)-(2.5),
Vip(61, 62, d3) is equal to :

Vip(61,82,83) = 81VT(S1) Ay + 62VT(ST) B, + 03—=(ST)wos

T

1 1

T E |:61\/T(~ coswot) + G2V T (— sinwgt) + 53—\7—_T(A0t sinwot — Bot cos wot)
t=1

x 2 ll — I{et<0}| .

T T
Now let Vp(d1,82,03) = ZUt’ and BZ = ZVar(Ut), then we also have
t=1 t=1
E(U) =0, and
2 2 2 2 B A
B} =4[(1 - 2r)d +3(0? + )] - (% + %2 + A : Bo 82 + 706153 - 7052(53)

+o(1).

Hence, by the Lindberg theorem applied to the above sum, we see that

Vr(81,82,83) converges in law to a normal distribution with zero mean and
variance

2 2 2 2
4[(1 - 2r)d+ (0 + p?)] - (%1 + %1 + AOEBO

B A
62+ 705153 - ?05253> .

Consequently, by the virtue of the Cramer-Wold device, we see that the joint
distribution of (\/T(ST) A0s VT (ST) By %(ST)WO) converges in law to

N((o, 0,0), 4[(1 —27)d +72(0? + ;ﬂ)] : 211),
where TIEEO Wr =28+ 71(1-26)] - Z11.

Therefore, we have (\/T (AT — A), VT (éT — By), VT3(wr — w0)> converges

in law to : (1 2r)d+ 2( 2 2)
— 4T T\O u 1
v (o0, S e ) o




322 Tae Soo Kim and Jung Ho Ahn

Suppose now that the model (1.1) is generalized to ¢ > 1. The function cor-
responding to (1.2) whose minimization yields estimators bp = (fllT, Elfp,c?)y_r,
e AqT,BqT,aqu) became (1.2), where 6 = (A;,Bl,wl,u- ,Aq,Bq,wq).

Theorem 2.5. If 6(8) is the ALS estimator of the non-linear time series re-
gression model (1.1) with the same assumptions of Theorem 2.3, then the ALS is

a strongly consistent estimator of 8y and (Pl (617(B)), P2 (627 (B)), - - , Pq(éqy(ﬂ)

)) converges in law

_ 2.2 1 2
N (03“1, (1 =27)d+ 7%(c? + p?) 'E_1>.

{8+7(1-2B)})

Proof. Likewise, for the one harmonic case, we could obtain the strong consis-
tency which is proved in Theorem 2.4, and we have I}im V2E[Dr(6; B)], which
-0

is a 3¢ x 3g positive definite matrix. This fact indicates for r = 1,2,--- g,
(VI(Arr = Ar0), VT(Byr = Bro), VI¥(yr — wro)) = 0p(L), where op(1) de-

notes convergence in probability to zero, and we can also have the fact
1
(\/T(STT)AO, \/T(S’J‘T)Bo ) ""/-.—f(SrT)w())

= — (VT(dsr = 40), VT(Br — Bo), VI3(@rr — w0)) X Wor,
where Wy in (2.2), and r = 1,2,--.,¢. O

Remark. Using the four results,Awe obtain the asymptotic efficiency of LSE
relative to LAD estimator :

tim eff(0rlir) = tim LU _ (900122

T500 Var(fr)
is smaller than one; and under the error distribution it is standard normal, and

also larger than one under the heavy-tailed distribution likewise the Laplace
distribution. As well, the asymptotic efficiency of ALS relative to RQE :

POt - 2r)d+ (0 + 12)]

B0~ B)[B+70-29)]

Jim eff(br(8)16r(8)) =
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is also smaller than one under the normal distribution with mean one and
variance one, larger than one under the Laplace distribution with parameter

B(0< B(#0.5)<1).
3. Monte Carlo simulations

In this section, we consider the simplest sinusoidal model with one compo-
nent, ie., for ¢ = 1 in the formula (1.1). We performed some Monte Carlo
simulations to compare the four different estimators. Under the four different
error distributions which are (a) the standard normal, (b) the Laplace with the
parameter 3, (c) the skewed Laplace (8 = 0.4) with the parameter 3 and lastly
(d) the skewed normal distribution with mean one and variance one, we study
the behavior of the four different methods of estimation for only small sam-
ple sizes, since they were already verified for the exact relations concerning the
agsymptotic sense. Numerical results are reported for T = 10,15 and 25 and
w = 0.257(~ 0.785398), 0.57(~ 1.570796) and 0.757(~ 2.356194).

For a particular T and w, thousands of different sets of data were generated.
The two linear parameters A and B are taken as 1.5, each. Under each given
data set, we estimated the nonlinear parameter w by the four methods. The rest
in this simulation runs show the same results as shown in Table 1. In the Table
4, avg. EST means the average estimates using the asymmetric least squares
methods ( ‘ALS’ ) and the regression quantile estimating method (‘RQE’), avg.
MSE means the average mean squared error, avg. C.I. is the average length of
the 95% confidence intervals and C.P. means the coverage probability over 1,000
simulation runs.

Table 1. When error distributions are the standard normal.

True |#of Sample |T = 10 T=15 T=25
Value ILSE LAD | LSE LAD | LSE LAD
avg. EST | 0.7843 0.7810 | 0.7852 0.7852 | 0.7842 0.7833
257 | avg. MSE | 0.0052 0.0098 | 0.0016 0.0028 | 0.0004 0.006
avg. C.I. ]0.1352 0.1395 | 0.0699 0.0715 | 0.0361 0.0371
C.P. 0.901 0.842 | 0.932 0.887 | 0.932 0.854
avg. EST | 1.5693 1.5718 | 1.5700 1.5690 | 1.5705 1.5701
507 | avg. MSE | 0.0052 0.0099 | 0.0016 0.0028 | 0.0003 0.0006
avg. C.I 0.1284 0.1335 | 0.0732 0.0751 | 0.0345 0.0350
C.P. 0.904 0.863 | 0.928 0.883 | 0.941 0.882
avg. EST | 2.3555 2.3583 | 2.3566 2.3576 | 2.3563 2.3586
757 | avg. MSE | 0.0051 0.0096 | 0.0016 0.0028 | 0.0003 0.0006
avg. C.I 0.1213 0.1260 | 0.0767 0.0779 | 0.0339 0.0350
C.P. 0.992 0.877 | 0.918 0.859 | 0.947 0.888
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Table 2. When error distributions are the Laplace with the parameter 3.

True |#of Sample |T = 10 T=15 T=25
Value LSE. LAD LSE LAD | LSE LAD
avg. EST | 0.7535 0.76749 | 0.7576 0.7744 { 0.7741 0.7742
256w | avg. MSE | 0.1041 0.0550 } 0.0293 0.0146 | 0.0062 0.0032
avg. C.I. | 0.5535 0.5773 | 0.3060 0.3057 | 0.1468 0.1495
C.P. 0.881 0.890 | 0.853 0.907 | 0.849  0.902
avg. EST | 1.5346 1.5732 | 1.5505 1.5593 | 1.5554 1.5563
.507 | avg. MSE | 0.1018 0.0549 | 0.0289 0.0150 | 0.0063 0.0032
avg. C.I. | 0.5469 0.5714 | 0.3051 0.3115 | 0.1478 0.1495
C.P. 0.848 0925 | 0.878 0.912 | 0.859  0.883
avg. EST | 2.3507 2.3494 | 2.3322 2.3499 | 2.3483 2.3519
757 | avg. MSE | 0.1047 0.0522 | 0.0296 0.0146 | 0.0063 0.0031
avg. C.I. | 0.5507 0.5550 | 0.3080 0.3087 | 0.1465 0.1455
C.P. 0.847 0910 | 0.872 0.922 | 0.897 0.937

Table 3. The skewed Laplace ( 8 = 0.4 ) with the parameter 3.

True |#of Sample [T =10 T=15 T=25
Value LSE LAD | LSE LAD | LSE LAD
avg. EST [0.7699 0.7792 | 0.7666 0.7718 | 0.7117 0.7801
.26 | avg. MSE | 0.1163 0.1045 | 0.0327 0.0285 | 0.0073 0.0055
avg. C.I. | 0.5494 0.5619 | 0.3045 0.3097 | 0.1519 0.1513
C.P. 0.860 0.893 | 0.784 0.916 | 0.566 0.915
avg. EST |1.5748 1.5672 | 1.5580 1.5675 |.1.5315 1.5636
507 | avg. MSE | 0.1216 0.1071 | 0.0335 0.0286 | 0.0071 0.0055
avg. C.I. | 0.5637 0.5745 | 0.3115 0.3155 | 0.1499 0.1487
C.P. 0.841 0.896 | 0.803 0.920 | 0.601 0.938
avg. EST |2.3621 2.3557 | 2.3432 2.3531 | 2.3324 2.3557
75w | avg. MSE | 0.1190 0.1046 | 0.0329 0.0294 ; 0.0071 0.0058
avg. C.I. | 0.5528 0.5706 | 0.3084 0.3151 | 0.1491 0.1483
C.P. 0.812 0.892 | 0.836 0.928 | 0.633 0.934

4. Conclusions

The above tables show all four cases; as T increases the absolute difference
between true parameter values and estimates, the average mean squared errors
and the average length of confidence interval decrease and the coverage proba-
bilities monotonically decrease to the asymptotic value in the case. And we have
the results that when the error terms are the case (a), the LSE usually performs
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better than the other methods as far as the estimation of w is concerned. Also,
we know for the case (b), the LAD and for the (c), the RQE is superior to the
other methods. From the asymptotic theory and Monte Carlo simulation runs,
we conclude that to estimate the true parameters in the real phenomenon, we
have to determine the error distribution using the general statistical analysis
and then choose the suitable estimating method.

Table 4. The skewed normal with mean one and variance one.

True |#of Sample |T = 10 T=15 T =25
Value ISE ILAD | ISE LAD | LSE LAD
avg. EST |0.7844 0.7854 | 0.7854 0.7819 | 0.7857 0.7857
257 | avg. MSE | 0.0090 0.0135 | 0.0025 0.0036 | 0.0005 0.0007
avg. CI. | 0.1583 0.1631 | 0.0790 0.0815 | 0.0411 0.0414
C.P. 0.933 0.897 | 0.938 0.900 | 0.950 0.885
avg. EST | 1.5694 1.5662 | 1.5712 1.5703 | 1.5708 1.5704
507 | avg. MSE | 0.0091 0.0135 | 0.0025 0.0037 | 0.0005 0.0008
avg. C.I. | 0.1509 0.1549 | 0.0832 0.0848 | 0.0395 0.0400
C.P. 0.948 0.905 | 0.939 0.893 | 0.951 0.892
avg. EST | 2.3553 2.3551 | 2.3566 2.3551 | 2.3562 2.3563
757 | avg. MSE | 0.0091 0.0135 { 0.0025 0.0036 | 0.0005 0.0008
avg. C.I. | 0.1447 0.1503 | 0.0857 0.0870 | 0.0384 0.0390
C.P. 0.946 0908 | 0.931 0.870 | 0.960 0.898
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