• Title/Summary/Keyword: Nonlinear switching control

Search Result 185, Processing Time 0.04 seconds

Self Learning Fuzzy Sliding Mode Controller for Nonlinear System

  • Seo, Sam-Jun;Kim, Dong-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.103.1-103
    • /
    • 2002
  • In variable structure control algorithms, The control law used to realized the desired sliding mode dynamics is discontinuous on the switching manifold. However, due to imperfections in switching, such as time delays, the system trajectory chatters instead of sliding along the switching manifold. This chattering is undesirable because it may excite unmodeled high frequency dynamics in the physical system. In this paper, to overcome this drawback a self-organizing fuzzy sliding mode control algorithm using gradient descent method is proposed. The proposed method has the characteristics which are viewed in conventional VSC, e.g. insensitivity to a class of disturbance, parameter variations and uncertainties ill the sliding mode. To demonstrate its performance, the proposed control algorithm is applied to an inverted pendulum system. The results show that both alleviation of chattering and performance are achieved.

  • PDF

Transient Response Improvement of Multiple Model/Controller IMC Using Recurrent Neural Networks (재귀신경망을 이용한 다중모델/제어기 IMC의 과도 응답 개선)

  • O, Won-Geun;Jo, Seong-Eon;So, Ji-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.7
    • /
    • pp.582-588
    • /
    • 2001
  • The Multiple Model/Controller IMC(MMC-IMC) is a model-based control method which uses a set of model/controller pairs rather than a single model/controller to handle all possible operating conditions in the IMC control structure. During operation, one model/controller pair that best fit, for current plant situation is chosen by the switching algorithm. The major drawback of the switching controller is the bad transient performance due to the model error and the use fo linear controller for nonlinear plants. In this paper, we propose a method that transient response of the MMC-IMC using two recurrent neural networks. Simulation result shows that the proposed method represents better performance than the usual MMC-IMC`s.

  • PDF

Combined Optimal Design of Structure-Control Systems by Sliding Mode Control (슬라이딩모드 제어 기법을 이용한 구조-제어 시스템의 통합 최적 설계)

  • Park, Jung-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.45-51
    • /
    • 2002
  • To achieve the lightweight and robust design of a structure, it is requested to design a structure and its control system simultaneously, which is called as the combined optimal design. A constant-cross-sectional area cantilever beam was chosen as an example for the applying the optimum design method. An initial load and a time varying disturbance were applied at the free end of the beam. Sliding mode control was selected due to its insensitiveness to the disturbance compared with other modes. It is known that the sliding mode control is robust to the disturbance and the uncertainty only if a matching condition is met, after giving a switching hyper plane. In this study, the optimum method was used for the design of the switching hyper plane and the objective function of the optimum switching hyper plane was assumed to be the objective one of the control system. The total weight of the structure was treated as a constraint and the cross sectional areas of the beam were considered as design variables, which means a nonlinear programming problem. The sequential linear programming method was applied to solve it. As a result of the optimum design, the effect of attenuating vibrations has been improved obviously. Moreover, lightweight design of the structure became possible from the relationship of the weight of the structure and the control objective function.

Stability Analysis and Control of Nonlinear Behavior in V2 Switching Buck Converter

  • Hu, Wei;Zhang, Fangying;Long, Xiaoli;Chen, Xinbing;Deng, Wenting
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1208-1216
    • /
    • 2014
  • Mismatch between switching frequency and circuit parameters often occurs in industrial applications, which would lead to instability phenomena. The bifurcation behavior of $V^2$ controlled buck converter is investigated as the pulse width modulation period is varied. Nonlinear behavior is analyzed based on the monodromy matrix of the system. We observed that the stable period-1 orbit was first transformed to the period-2 bifurcation, which subsequently changed to chaos. The mechanism of the series of period-2 bifurcations shows that the characteristic eigenvalue of the monodromy matrix passes through the unit circle along the negative real axis. Resonant parametric perturbation technique has been applied to prevent the onset of instability. Meanwhile, the extended stability region of the converter is obtained. Simulation and experimental prototypes are built, and the corresponding results verify the theoretical analysis.

Adaptive fuzzy learning control for a class of second order nonlinear dynamic systems

  • Park, B.H.;Lee, Jin S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.103-106
    • /
    • 1996
  • This paper presents an iterative fuzzy learning control scheme which is applicable to a broad class of nonlinear systems. The control scheme achieves system stability and boundedness by using the linear feedback plus adaptive fuzzy controller and achieves precise tracking by using the iterative learning rules. The switching mode control unit is added to the adaptive fuzzy controller in order to compensate for the error that has been inevitably introduced from the fuzzy approximation of the nonlinear part. It also obviates any supervisory control action in the adaptive fuzzy controller which normally requires high gain signal. The learning control algorithm obviates any output derivative terms which are vulnerable to noise.

  • PDF

System Development for Education and Design of a Nonlinear Controller with On-Line Algorithm

  • Park, Seong-Wook
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.2
    • /
    • pp.215-221
    • /
    • 2003
  • The education system in this paper is used to demonstrate and educate the effects of electromagnetic induction. Placing an aluminum ring over the core and switching on AC source causes the ring to jump in the air due to induced currents in the ring producing a magnetic field opposed to that produced in the core. To control the position of the ring by only the current, it is to require nonlinear control algorithm and control board that is composed of photo sensors, decode circuit, computer communication, and power electronics circuit. This paper provides the development for education system in detail and the effects of dynamic neural networks for nonlinear control with on line is studied.

Combined Optimal Design of Flexible Beam with Sliding Mode Control System

  • Park, Jung-Hyen;Kim, Soon-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.59-65
    • /
    • 2003
  • In order to achieve the desired lightweight and robust design of a structure, it is preferable to design a structure and its control system, simultaneously, which is termed the combined optimal design. A constant-cross-sectional area cantilever beam was chosen as the optimum design method, An initial load and a time-varying disturbance were applied at the free end of the beam. Sliding mode control was selected, due to its insensitivity to the disturbance, compared with other modes. It is known that the sliding mode control is robust to the disturbance and is uncertain, only if a matching condition is met, after giving a switching hyper plane. In this study, the optimum method was used for the design of the switching hyper plane, and the objective function of the optimum switching hyper plane was assumed to be the objective of the control system. The total weight of the structure was treated as a constraint, and the cross sectional areas of the beam were considered as design variables, the result being a nonlinear programming problem. To solve it, the sequential linear programming method was applied. As a result of the optimum design, the effect of attenuating vibrations has been substantially improved. Moreover, the lightweight design of the structure became possible as a result of the relationship of the weight of the structure to the control objective function.

A Design of a High Performance UPS with Capacitor Current Feedback for Nonlinear Loads (비선형 부하에서 커패시터 전류 궤환을 통한 고성능 UPS 설계)

  • Lee, Woo-Cheol;Lee, Taeck-Kie
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.5
    • /
    • pp.71-78
    • /
    • 2012
  • This paper presents a digital control solution to process capacitor current feedback of high performance single-phase UPS for non-linear loads. In all UPS the goal is to maintain the desired output voltage waveform and RMS value over all unknown load conditions and transient response. The proposed UPS uses instantaneous load voltage and filter capacitor current feedback, which is based on the double regulation loop such as the outer voltage control loop and inner current control loop. The proposed DSP-based digital-controlled PWM inverter system has fast dynamic response and low total harmonic distortion (THD) for nonlinear load. The control system was implemented on a 32bit Floating-point DSP controller TMS320C32 and tested on a 5[KVA] IGBT based inverter switching at 11[Khz]. The validity of the proposed scheme is investigated through simulation and experimental results.

Bistable Switching Behaviors of One-dimensional Nonlinear Photonic Crystal with Ken Medium (일차원 Ken 비선형 광결정의 쌍안정 스위칭 특성)

  • Kim, Dalwllo;Lixue Chen
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.94-95
    • /
    • 2002
  • Photonic crystal (PC) has special interests for their promising applications in three-dimensional photon control and integrated devices. In a nonlinear photonic crystal (NPC), optical intensity in a defect layer is greatly increased due to the location function of NPC and nonlinearity. The nonliearity of the defect layer is very much enhanced because the group velocity is reduced and the interaction time between light and nonlinear medium in the defect layer is enlarged. (omitted)

  • PDF

Exponential Stabilization of a Class of Underactuated Mechanical Systems using Dynamic Surface Control

  • Qaiser, Nadeem;Iqbal, Naeem;Hussain, Amir;Qaiser, Naeem
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.547-558
    • /
    • 2007
  • This paper proposes a simpler solution to the stabilization problem of a special class of nonlinear underactuated mechanical systems which includes widely studied benchmark systems like Inertia Wheel Pendulum, TORA and Acrobot. Complex internal dynamics and lack of exact feedback linearizibility of these systems makes design of control law a challenging task. Stabilization of these systems has been achieved using Energy Shaping and damping injection and Backstepping technique. Former results in hybrid or switching architectures that make stability analysis complicated whereas use of backstepping some times requires closed form explicit solutions of highly nonlinear equations resulting from partial feedback linearization. It also exhibits the phenomenon of explosions of terms resulting in a highly complicated control law. Exploiting recently introduced Dynamic Surface Control technique and using control Lyapunov function method, a novel nonlinear controller design is presented as a solution to these problems. The stability of the closed loop system is analyzed by exploiting its two-time scale nature and applying concepts from Singular Perturbation Theory. The design procedure is shown to be simpler and more intuitive than existing designs. Design has been applied to important benchmark systems belonging to the class demonstrating controller design simplicity. Advantages over conventional Energy Shaping and Backstepping controllers are analyzed theoretically and performance is verified using numerical simulations.