• Title/Summary/Keyword: Nonlinear spring

Search Result 384, Processing Time 0.022 seconds

Winkler spring behavior in FE analyses of dowel action in statically loaded RC cracks

  • Figueira, Diogo;Sousa, Carlos;Neves, Afonso Serra
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.593-605
    • /
    • 2018
  • A nonlinear finite element modeling approach is developed to assess the behavior of a dowel bar embedded on a single concrete block substrate, subjected to monotonic loading. In this approach, a discrete representation of the steel reinforcing bar is considered, using beam finite elements with nonlinear material behavior. The bar is connected to the concrete embedment through nonlinear Winkler spring elements. This modeling approach can only be used if a new constitutive model is developed for the spring elements, to simulate the deformability and strength of the concrete substrate. To define this constitutive model, an extensive literature review was conducted, as well as 3 experimental tests, in order to select the experimental data which can be used in the calibration of the model. Based on this data, an empirical model was established to predict the global dowel response, for a wide range of bar diameters and concrete strengths. This empirical model provided the information needed for calibration of the nonlinear Winkler spring model, valid for dowel displacements up to 4 mm. This new constitutive model is composed by 5 stages, in order to reproduce the concrete substrate response.

Exact solutions of vibration and postbuckling response of curved beam rested on nonlinear viscoelastic foundations

  • Nazira Mohamed;Salwa A. Mohamed;Mohamed A. Eltaher
    • Advances in aircraft and spacecraft science
    • /
    • v.11 no.1
    • /
    • pp.55-81
    • /
    • 2024
  • This paper presents the exact solutions and closed forms for of nonlinear stability and vibration behaviors of straight and curved beams with nonlinear viscoelastic boundary conditions, for the first time. The mathematical formulations of the beam are expressed based on Euler-Bernoulli beam theory with the von Karman nonlinearity to include the mid-plane stretching. The classical boundary conditions are replaced by nonlinear viscoelastic boundary conditions on both sides, that are presented by three elements (i.e., linear spring, nonlinear spring, and nonlinear damper). The nonlinear integro-differential equation of buckling problem subjected to nonlinear nonhomogeneous boundary conditions is derived and exactly solved to compute nonlinear static response and critical buckling load. The vibration problem is converted to nonlinear eigenvalue problem and solved analytically to calculate the natural frequencies and to predict the corresponding mode shapes. Parametric studies are carried out to depict the effects of nonlinear boundary conditions and amplitude of initial curvature on nonlinear static response and vibration behaviors of curved beam. Numerical results show that the nonlinear boundary conditions have significant effects on the critical buckling load, nonlinear buckling response and natural frequencies of the curved beam. The proposed model can be exploited in analysis of macrosystem (airfoil, flappers and wings) and microsystem (MEMS, nanosensor and nanoactuators).

Dynamic Modeling of Satellite with Deployable Solar Arrays (인공위성 태양전지판 전개 시스템 동적 모델링)

  • Seok Heo;Moon K. Kwak;Kim, Hong-B;Sang M. Moon;Sung H. Woo;Lee, Sang S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.373.2-373
    • /
    • 2002
  • This research is concerned with dynamic modeling of satellite with deployable solar arrays equipped with strain energy hinges (SEH). It is found from experiments that the SEH has nonlinear dynamic characteristics and complex buckling behavior, which is difficult to explain theoretically In this paper, we use an equivalent one dimensional nonlinear torsional spring for the SEH. Lagrangian equations of motion are used for the derivations.

  • PDF

Pushover Analysis of Reinforced Concrete Shear Wall Subjected to High Axial Load Using Fiber Slices and Inelastic Shear Spring (섬유(Fiber)요소와 비선형 전단스프링을 적용한 고축력을 받는 철근콘크리트 전단벽의 비선형거동 분석)

  • Jun, Dae Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.239-246
    • /
    • 2015
  • Reinforced concrete shear walls are effective for resisting lateral loads imposed by wind or earthquakes. Observed damages of the shear wall in recent earthquakes in Chile(2010) and New Zealand(2011) exceeded expectations. Various analytical models have been proposed in order to incorporate such response features in predicting the inelastic response of RC shear walls. However, the model has not been implemented into widely available computer programs, and has not been sufficiently calibrated with and validated against extensive experimental data at both local and global response levels. In this study, reinforced concrete shear walls were modeled with fiber slices, where cross section and reinforcement details of shear walls can be arranged freely. Nonlinear analysis was performed by adding nonlinear shear spring elements that can represent shear deformation. This analysis result will be compared with the existing experiment results. To investigate the nonlinear behavior of reinforced concrete shear walls, reinforced concrete single shear walls with rectangular wall cross section were selected. The analysis results showed that the yield strength of the shear wall was approximately the same value as the experimental results. However, the yielding displacement of the shear wall was still higher in the experiment than the analysis. The analytical model used in this study is available for the analysis of shear wall subjected to high axial forces.

Large deformation analysis of inflated air-spring shell made of rubber-textile cord composite

  • Tran, Huu Nam;Tran, Ich Thinh
    • Structural Engineering and Mechanics
    • /
    • v.24 no.1
    • /
    • pp.31-50
    • /
    • 2006
  • This paper deals with the mechanical behaviour of the thin-walled cylindrical air-spring shell (CAS) made of rubber-textile cord composite (RCC) subjected to different types of loading. An orthotropic hyperelastic constitutive model is presented which can be applied to numerical simulation for the response of biological soft tissue and of the nonlinear anisotropic hyperelastic material of the CAS used in vibroisolation of driver's seat. The parameters of strain energy function of the constitutive model are fitted to the experimental results by the nonlinear least squares method. The deformation of the inflated CAS is calculated by solving the system of five first-order ordinary differential equations with the material constitutive law and proper boundary conditions. Nonlinear hyperelastic constitutive equations of orthotropic composite material are incorporated into the finite strain analysis by finite element method (FEM). The results for the deformation analysis of the inflated CAS made of RCC are given. Numerical results of principal stretches and deformed profiles of the inflated CAS obtained by numerical deformation analysis are compared with experimental ones.

Three Axis Disk Spring Damper Containing Wedge System (웻지를 이용한 3축 방향 디스크 스프링 댐퍼에 관한 연구)

  • Choi, Myung-Jin;Jeong, Ji-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.6
    • /
    • pp.1-8
    • /
    • 2009
  • This study pertains to damping device to reduce vibrational responses and shocks in multi-directions. To enhance the capability of disk spring damper which works for vertical vibration and shock, a multi-directional damper is proposed, which contains wedge system as well as disk spring stack. Wedge system converts horizontal load into vertical load. A mathematical model is proposed and investigated for the nonlinear behaviors of the disc spring damper containing wedge system. The results accord with the experimental results. Equivalent viscous damping in vertical and horizontal directions are found based upon energy dissipated.

  • PDF

A Study on the Optimal Design of Automotive Gas Spring (차량용 가스스프링의 최적설계에 관한 연구)

  • Lee, Choon Tae
    • Journal of Drive and Control
    • /
    • v.14 no.4
    • /
    • pp.45-50
    • /
    • 2017
  • The gas spring is a hydropneumatic adjusting element, consisting of a pressure tube, a piston rod, a piston and a connection fitting. The gas spring is filled with compressed nitrogen within the cylinder. The filling pressure acts on both sides of the piston and because of area difference it produces an extension force. Therefore, a gas spring is similar in function compare to mechanical coil spring. Conversely, optimization is a process of finding the best set of parameters to reach a goal while not violating certain constraints. The AMESim software provides NLPQL (Nonlinear Programming by Quadratic Lagrangian) and GA (genetic algorithm) for optimization. The NLPQL method builds a quadratic approximation to the Lagrange function and linear approximations to all output constraints at each iteration, starting with the identity matrix for the Hessian of the Lagrangian, and gradually updating it using the BFGS method. On each iteration, a quadratic programming problem is solved to find an improved design until the final convergence to the optimum design. In this study, we conducted optimization design of the gas spring reaction force with NLPQL.

Modified sigmoid based model and experimental analysis of shape memory alloy spring as variable stiffness actuator

  • Sul, Bhagoji B.;Dhanalakshmi, K.
    • Smart Structures and Systems
    • /
    • v.24 no.3
    • /
    • pp.361-377
    • /
    • 2019
  • The stiffness of shape memory alloy (SMA) spring while in actuation is represented by an empirical model that is derived from the logistic differential equation. This model correlates the stiffness to the alloy temperature and the functionality of SMA spring as active variable stiffness actuator (VSA) is analyzed based on factors that are the input conditions (activation current, duty cycle and excitation frequency) and operating conditions (pre-stress and mechanical connection). The model parameters are estimated by adopting the nonlinear least square method, henceforth, the model is validated experimentally. The average correlation factor of 0.95 between the model response and experimental results validates the proposed model. In furtherance, the justification is augmented from the comparison with existing stiffness models (logistic curve model and polynomial model). The important distinction from several observations regarding the comparison of the model prediction with the experimental states that it is more superior, flexible and adaptable than the existing. The nature of stiffness variation in the SMA spring is assessed also from the Dynamic Mechanical Thermal Analysis (DMTA), which as well proves the proposal. This model advances the ability to use SMA integrated mechanism for enhanced variable stiffness actuation. The investigation proves that the stiffness of SMA spring may be altered under controlled conditions.

Numerical study on the moment capacity of zed-section purlins under uplift loading

  • Zhu, Jue;Chen, Jian-Kang;Ren, Chong
    • Structural Engineering and Mechanics
    • /
    • v.49 no.2
    • /
    • pp.147-161
    • /
    • 2014
  • In this paper a nonlinear finite element analysis model is established for cold-formed steel zed-section purlins subjected to uplift loading. In the model, the lateral and rotational restraints provided by the sheeting to the purlin are simplified as a lateral rigid restraint imposed at the upper flange-web junction and a rotational spring restraint applied at the mid of the upper flange where the sheeting is fixed. The analyses are performed by considering both geometrical and material nonlinearities. The influences of the rotational spring stiffness and initial geometrical imperfections on the uplift loading capacity of the purlin are investigated numerically. It is found that the rotational spring stiffness has significant influence on the purlin performance. However, the influence of the initial geometric imperfections on the purlin performance is found only in purlins of medium or long length with no or low rotational spring stiffness.

Nonlinear Vibration Responses of a Spring-Pendulum System under Random Base Excitation (불규칙 지반 가진력을 받는 탄성진자계의 비선형진동응답)

  • Cho, Duk-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.3
    • /
    • pp.175-181
    • /
    • 2001
  • An investigation into the response statistics of a spring-pendulum system whose base oscillates randomly along vertical and horizontal line is made. The spring-pendulum system with internal resonance examined is known to be a good model for a variety of engineering systems, including ship motions with nonlinear coupling between pitching and rolling motions. The Fokker-Planck equation is used to generate a general first-order differential equations for the random responses of the system are reduced to a system of autonomous ordinary differential equations. In view of equilibrium solutions of this system and their stability, the response statistics is examined. It is seen that increase in horizontal excitation level leads to a decreased width of the internal resonance region.

  • PDF