• 제목/요약/키워드: Nonlinear speed control

Search Result 500, Processing Time 0.032 seconds

A study on a design for a centrifugal pump impeller shape (원심펌프 회전차 형상 설계에 대한 연구)

  • 김진환
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.213-220
    • /
    • 1997
  • In this study, a design for a shape of centrifugal pump impeller has been performed using a p.c. under a Windows environment. Interaction between a user and a computer has been easily established using the Visual Basic. In determining an outer diameter of an impeller, steps are divided into two, a basic computational step and a refinment step. In this way user can enter his/her experience at the refinment step and hence can expect to lessen the nonlinear nature inherent to the design. In determining a shape of a side view of an impeller, the Bezier cubic curve has been used, and it can be seen that the Bezier cubic curves are well suited in the shape design under a Windows environment. By simply manipulating the four control points, one can generate various cubic curves among which one is selected. Also, a simple method, which can determine the curved position of an impeller vane, has been developed. These data can be used for final CAD drawings.

  • PDF

Fault Analysis of IPM type BLDC Motor Using Nonlinear Modeling of Stator Inter Turn Faults (고정자 절연파괴 비선형 모델링을 이용한 매입형 영구자석 전동기의 고장분석)

  • Kim, Kyung-Tae;Hur, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.531-537
    • /
    • 2011
  • This paper proposes a finite element method (FEM)-based model of an interior permanent magnet (IPM) type BLDC motor having stator inter-turn faults. For more realistic simulation studies, the magnetic non-linearity is also considered in proposed model. And the simulation data are verified through experiment. By integrating the developed model with a current-controlled voltage source inverter (CCVSI) model, the characteristics of an inter-turn fault operated by six-switched inverter are investigated considering the speed control. And the circulating current, which is induced by magnetic linkage flux originated from PM, was analyzed from the view point of distortion of air-gap magnetic flux distribution caused deterioration of their torque.

A Nonlinear Speed Control for a Permanent Magnet Synchronous Motor Using a Simple Disturbance Estimation Technique (외란 관측기법을 이용한 영구자석형 동기전동기의 비선형 속도 제어)

  • Lee Na-Young;Kim Kyoung-Hwa;Yoon Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.381-384
    • /
    • 2001
  • 본 논문에서는 간단한 외란 관측 기법을 이용한 영구자 석형 동기 전동기(Permanent Magnet Synchronous Motor: PMSM)의 비선형 속도 제어 기법이 제안된다. 피드백 선형화 (feedback linearization) 기법을 이용함으로써 비선형 요소가 효과적으로 제거되고 출력 오차 동특성을 선형 제어 기법에 기반 하여 설정할 수 있다. 그리고 파라미터 변동에 의한 비선형 외란을 제거하기 위해 본 논문에서는 외란 관측 기법을 이용한다. 제안한 관측기를 이용한 비선형 속도 제어 알고리즘이 파라미터 변동에 대해 강인한 제어 특성을 가짐을 시뮬레이션으로 확인하였다.

  • PDF

Minimization of Membership Function with Fuzzy Control (펴지 제어기의 소속함수 최소화에 관한 연구)

  • Joo, Han-Jo;Park, Seung-Hun;Hong, Dea-Sung;Yim, Wha-Yoeng
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.968-970
    • /
    • 2003
  • Fuzzy Controller is a system that displays a person's thoughts using membership function and IF-THEN rules. With the help of specialists' knowledge, rule bases can be explained in easy language. Furthermore Fuzzy Controller has strong resistance against turbulence. Its performance is especially prominent when targets cannot be measured in mathematic methods because the fuzzy controller can measure the output using only the relations between the input and output. But Fuzzy System has a problem that is calculation speed. I suggest you a theory to solve it. I applied a theory to inverted pendulum. Because it is represent of nonlinear system.

  • PDF

A Study on AC Servo Motor Speed Control with Fuzzy Controller (퍼지제어기를 이용한 AC Servo Motor의 속도제어에 관한 연구)

  • Yoon, Hyung-Sang;Cha, In-Su;Lee, Kwun-Hyun;Park, Hae-Am
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.344-346
    • /
    • 1995
  • In this paper a drive strategy of AC Servo Motor using Fuzzy method was proposed. Since the transfer function of the plant is nonlinear and very complicated, there are difficultly in driving the system with real time. The performance of out method is confirmed by computer simulation and experimental results. The high performance and high accuracy of the driving system. Fuzzy is designed and proposed.

  • PDF

Adaptive Feedback Linearization Control Based on Airgap Flux Model for Induction Motors

  • Jeon Seok-Ho;Baang Dane;Choi Jin-Young
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.414-427
    • /
    • 2006
  • This paper presents an adaptive feedback linearization control scheme for induction motors with simultaneous variation of rotor and stator resistances. Two typical modeling techniques, rotor flux model and stator flux model, have been developed and successfully applied to the controller design and adaptive observer design, respectively. By using stator fluxes as states, over-parametrization in adaptive control can be prevented and control strategy can be developed without the need of nonlinear transformation. It also decrease the relative degree for the flux modulus by one, thereby, yielding, a simple control algorithm. However, when this method is used for flux observer, it cannot guarantee the convergence of flux. Similarly, the rotor flux model may be appropriate for observers, but it is not so for adaptive controllers. In addition, if these two existing methods are merged into overall adaptive control system, it brings about structural complexies. In this paper, we did not use these two modeling methods, and opted for the airgap flux model which takes on only the positive aspects of the existing rotor flux model and stator flux model and prevents structural complexity from occuring. Through theoretical analysis by using Lyapunov's direct method, simulations, and actual experiments, it is shown that stator and rotor resistances converge to their actual values, flux is well estimated, and torque and flux are controlled independently with the measurements of rotor speed, stator currents, and stator voltages. These results were achieved under the persistent excitation condition, which is shown to hold in the simulation.

Design of a Hybrid Fuzzy Controller for Speed Control of a Hydraulic Elevator Controlled by Inverters (유압식 인버터 엘리베이터의 속도제어를 위한 하이브리드 퍼지제어기의 설계)

  • Han, Gueon-Sang;Kim, Byoung-Hwa;Ahn, Hyun-Sik;Kim, Do-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.1
    • /
    • pp.1-13
    • /
    • 2001
  • Due to the friction characteristics of cylinders and the rail of a passenger car, in the elevator actuated with hydraulic systems, there exist dead zones, which can not be controlled by a PID controller. To overcome the drawbacks, in this paper, we first try a hybrid controller which switches between a fuzzy logic controller and a PID controller. However, because the hybrid control scheme uses only a single type controller, except the switched layer, the high control performance can not be achieved. To solve this problem, we propose a new type fuzzy hybrid control scheme, which outputs of the output mixer arc controlled by a fuzzy logic. The hydraulic elevator system controlled by inverters has more then one switched layers due to the highly nonlinear characteristics. The proposed fuzzy hybrid control scheme achieves improved control performances by using both controllers with weighted outputs depend on the system status, to achieve improved control performances. The effectiveness of the proposed control scheme arc shown by simulation results, which the proposed fuzzy hybrid control method yields good control performance not only in the zero crossing speed region but also in the overall control region including steady-state region.

  • PDF

Adaptive Chaos Control of Time-Varying Permanent-Magnet Synchronous Motors (시변 영구자석형 동기 전동기의 적응형 카오스 제어)

  • Jeong, Sang-Chul;Cho, Hyun-Cheol;Lee, Hyung-Ki
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.1
    • /
    • pp.89-97
    • /
    • 2008
  • Chaotic behavior in motor systems is undesired dynamics in real-time implementation since the speed is oscillated in a wide range and the torque is changed by a random manner. We present an adaptive control approach for time-varying permanent-magnet synchronous motors (PMSM) with chaotic phenomenon. We consider that its parameters are changed randomly within certain bounds. First, a nonlinear system model of a PMSM is transformed to derive a nominal linear control strategy. Then, an auxiliary control for compensating real-time control error occurred by system perturbation due to parameter change is designed by using Lyapunov stability theory. Numerical simulation is accomplished for evaluating its efficiency and reliability comparing with the traditional control method. Additionally, we test our control method in real-time motor experiment including a PSoC based drive system to demonstrate its practical applicability.

  • PDF

Control of Inertially Stabilized Platform Using Disturbance Torque Estimation and Compensation (외란토크 추정 및 보상을 이용한 관성안정화 플랫폼의 제어)

  • Choi, Kyungjun;Won, Mooncheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • In this study, we propose a control algorithm for Inertially Stabilized Platforms (ISP), which combines Disturbance Observer (DOB) with conventional proportional integral derivative (PID) control algorithm. A single axis ISP system was constructed using a direct drive motor. The joint friction was modeled as a nonlinear function of joint speed while the accuracy of the model was verified through experiments and simulation. In addition, various Q-filters, which have different orders and relative degrees of freedom (DOF), were implemented. The stability and performance of the ISP were compared through experimental study. The performance of the proposed PID-plus-DOB algorithm was compared with the experimental results of the conventional double loop PID control under artificial vehicle motion provided motion simulator with six DOF.

Control of Weld Pool Size in GMA Welding Process Using Neural Networks (신경회로를 이용한 GMA 용접 공정에서의 용융지의 크기 제어)

  • 임태균;조형석;부광석
    • Journal of Welding and Joining
    • /
    • v.12 no.1
    • /
    • pp.59-72
    • /
    • 1994
  • This paper presents an on-line quality monitoring and control method to obtain a uniform weld quality in gas metal arc welding (GMAW) processes. The geometrical parameters of the weld pool such as the top bead width and the penetration depth plus half back width are utilized to assess the integrity of the weld quality. Since a good quality weld is characterized by a relatively high depth-to-width ratio in its dimensions, the second geometrical parameter is regulated to a desired one. The monitoring variables are the surface temperatures measured at various points on the top surface of the weldment which are strongly related to the formation of the weld pool The relationship between the measured temperatures and the weld pool size is implemented on the multilayer perceptrons which are powerful for realization of complex mapping characteristics through training by samples. For on-line quality monitoring and control, it is prerequisite to estimate the weld pool sizes in the region of transient states. For this purpose, the time history of the surface temperatures is used as the input to the neural estimator. The control purpose is to obtain a uniform weld quality. In this research, the weld pool size is directly regulated to a desired one. The proposed controller is composed of a neural pool size estimator, a neural feedforward controller and a conventional feedback controller. The pool size estimator predicts the weld pool size under growing. The feedforward controller compensates for the nonlinear characteristics of the welding process. A series of simulation studies shows that the proposed control method improves the overall system response in the presence of changes in torch travel speed during GMA welding and guarantees the uniform weld quality.

  • PDF