• Title/Summary/Keyword: Nonlinear observer theory

Search Result 45, Processing Time 0.03 seconds

Rotor Flux Estimation of Induction Motor Using Extended Luenberger Observer (확장된 Luenberger 관측기를 이용한 유도전동기 회전자 자속추정)

  • 최연옥
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.600-604
    • /
    • 2000
  • In this paper authors proposed a new nonlinear rotor flux observer for rotor field oriented control of an induction motor which is designed based on theory of the extended Luenberger observer(ELO) one of a nonlinear state observer. The proposed rotor flux observer is derived from the 2 phase model of induction motor by the theory of ELO. The simulation results taken under the varying condition of rotor resistance and load torque show fast convergence of estimated rotor flux and high performance of IM drive system is achieved 표 experiment.

  • PDF

Design and Analysis of Dynamic Positioning System Using a Nonlinear Robust Observer

  • Kim, Myung-Hyun
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.5 no.1
    • /
    • pp.46-52
    • /
    • 2002
  • A robust nonlinear observer, utilizing the sliding mode concept, is developed for the dynamic positioning of ships. The observer provides the estimates of linear velocities of the ship and bias from slowly varying environmental loads. It also filters out wave frequency motion to avoid wear of actuators and excessive fuel consumption. The main advantage of the proposed observer is in its robustness. Especially, the observer structure with a saturation function makes the proposed observer robust against neglected nonlinearties, disturbances and uncertainties. Since the mathematical model of DP ships is difficult to obtain and includes uncertainties and disturbances, it is very important for the observer to be robust. A nonlinear output feedback controller is derives based on the developed observer using the observer backstepping technique, and the global stability of the observer and control law is shown by Lyapunov stability theory.. A set of simulation was carried out to investigate the performance of the proposed observer for dynamic positioning of ships.

  • PDF

A study on an effective tuning of a nonlinear state observer (비선형 상태 변수 관측기의 효과적인 이득 선정에 관한 연구)

  • 이훈구;탁민제
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.636-641
    • /
    • 1993
  • Recent researches on control theory enable nonlinear state feedback which is more closer to real system without approximation. To apply nonlinear control theories, all state variables should be measured or estimated. In this paper, a technique of designing nonlinear state observer for a particular class of nonlinear system is presented. The result is applied to an aircraft model to prove the convergency of observation error.

  • PDF

Leader-Following Formation Control of Multiple Robots with Uncertainties through Sliding Mode and Nonlinear Disturbance Observer

  • Qian, Dianwei;Tong, Shiwen;Li, Chengdong
    • ETRI Journal
    • /
    • v.38 no.5
    • /
    • pp.1008-1018
    • /
    • 2016
  • This paper presents a control scheme for the leader-following formation of multiple robots. The control scheme combines the sliding mode control (SMC) method with the nonlinear disturbance observer (NDOB) technique. The formation dynamics suffer from uncertainties because the individual robots are uncertain. Concerning such formation uncertainties, the leader-following formation dynamics are modeled. Assuming that the formation uncertainties have an unknown boundary, an NDOB-based observer was designed to estimate the formation uncertainties. A sliding surface containing the observer outputs has been defined. Regarding the sliding surface, an SMC-based controller was investigated to form uncertain robots. A sufficient condition in the sense of the Lyapunov theory was proven such that the formation system is asymptotically stable. Herein, some comparison results between the sole SMC method and the second-order SMC method are presented to demonstrate the effectiveness and feasibility of the control scheme for multiple robots in the presence of uncertainties.

Rotor Flux Estimation of an Induction Motor using the Extended Luenberger Observer (확장된 루엔버거 관측기를 이용한 유도전동기 회전자 자속 추정)

  • 조금배;최연옥;정삼용
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.115-124
    • /
    • 2001
  • In this paper, authors propose a new nonlinear rotor flux observer for rotor field oriented control of an induction motor which is designed based on the extended Luenberger Observer theory. Extended Luenberger Observer requires minimal solution of nonlinear partial differential equation on its coordinate transformation and linearization needed on a nonlinear observer design in general. The proposed rotor flux observer is derived from the 2 phase model of induction motor on the orthogonal coordination and it has the reduce gain matrix. Simulation and experimentation were performed under the conventional indirect vector control and direct vector control with the proposed observer at different rotor resistance. Simulation results show that the convergence of the proposed observer is influenced by the chosen eigenvalues. Experimentation results on load operation show the direct vector control with the proposed observer is better than the indirect vector control to maintain the characteristics of the vector control.

  • PDF

Design of T-S Fuzzy Model based Adaptive Fuzzy Observer and Controller

  • Ahn, Chang-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.11
    • /
    • pp.9-21
    • /
    • 2009
  • This paper proposes the alternative observer and controller design scheme based on T-S fuzzy model. Nonlinear systems are represented by fuzzy models since fuzzy logic systems are universal approximators. In order to estimate the unmeasurable states of a given unknown nonlinear system, T-S fuzzy modeling method is applied to get the dynamics of an observation system. T-S fuzzy system uses the linear combination of the input state variables and the modeling applications of them to various kinds of nonlinear systems can be found. The proposed indirect adaptive fuzzy observer based on T-S fuzzy model can cope with not only unknown states but also unknown parameters. The proposed controller is based on a simple output feedback method. Therefore, it solves the singularity problem, without any additional algorithm, which occurs in the inverse dynamics based on the feedback linearization method. The adaptive fuzzy scheme estimates the parameters and the feedback gain comprising the fuzzy model representing the observation system. In the process of deriving adaptive law, the Lyapunov theory and Lipchitz condition are used. To show the performance of the proposed observer and controller, they are applied to an inverted pendulum on a cart.

Fuzzy Disturbance Observer based Multiple Sliding Surface Control of Nonlinear Systems with Mismatched Disturbance (부정합조건 외란을 갖는 비선형 시스템의 퍼지 외란 관측기 기반 다중 슬라이딩 평면 제어)

  • Lee, Sang-Yun;Seo, Hyungkeun;Hyun, Chang-Ho;Park, Mignon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.4
    • /
    • pp.385-391
    • /
    • 2014
  • This paper proposes fuzzy disturbance observer based multiple sliding surface control scheme for nonlinear systems with mismatched disturbance. In order to stabilize nonlinear systems with mismatched disturbance, a controller based on multiple sliding surface control scheme is designed. In addition, a fuzzy disturbance observer is used to estimate the disturbance. Using the fuzzy disturbance observer, "explosion of terms" problem and chattering problem were solved. The stability of the proposed control scheme is analyzed by Lyapunov stability theory. For the verification, we apply the proposed method to numerical examples and compare its result with that of the applied nonlinear disturbance observer based sliding mode control.

The Control of Switched Reluctance Motors Using Binary Observer without Speed and Position Sensors (이원 관측기를 이용한 SRM의 속도 및 위치 센서없는 제어)

  • Sin, Jae-Hwa;Yang, Lee-U;Kim, Yeong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.8
    • /
    • pp.457-466
    • /
    • 2002
  • The speed and position control of SRM(Switched Reluctance Motor) needs the encoder or resolver to obtain the rotor position information. These position sensors can be affected by the EMI, dusty, and high temperature surroundings. Therefore the speed and position sensorless control has been studied widely In this paper, the binary observer of the SRM which has two feedback compensation loops to control the speed of SRM is proposed. One loop reduces the estimation error like the sliding mode observer, and the other removes the estimation error chattering occurred in the sliding mode observer. This observer is constructed on the basis of variable structure control theory and has the inertial term to exclude the chattering. This method has a good estimation performance in spite of nonlinear modeling of SRM. The advantages of the proposed method are verified experimentally.

A study on the tracking control of load pressure in electrohydraulic servosystem using sliding mode (슬라이딩모드를 이용한 유압서보시스템의 부하압력추종제어에 관한 연구)

  • 이교일;김학성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.687-692
    • /
    • 1990
  • The purpose of this study is ID form the required force for measurements of the performances of the equipments or testpieces. For the generation of the required force, ft difference of pressures in each chamber of the hydraulic cylinder was controlled and Variable Structure Control theory was adopted to control it. Besides, observers -Luenberger Observer and nonlinear Variable Structure Observer - were designed to estimate the derivative of the load pressure which is necessary ID determine the sliding surface in VSC theory. As a consequence of the computer simulation, it was shown that VSC had better performance than classical control theory(P, PD control) and VSO performed better than the Luenberger Observer at the load pressure control.

  • PDF

Indirect Adaptive Fuzzy Observer Design

  • Yang, Jong-Kun;Hyun, Chang-Ho;Kim, Jae-Hun;Kim, Eun-Tai;Park, Mi-Gnon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.192-196
    • /
    • 2004
  • This paper proposes an alternative observation scheme, T-S fuzzy model based indirect adaptive fuzzy observer. Nonlinear systems are represented by fuzzy models since fuzzy logic systems are universal approximators. In order to estimate the unmeasurable states of a given nonlinear system, T-S fuzzy modeling method is applied to get the dynamics of an observation system. T-S fuzzy system uses the linear combination of the input state variables and the modeling applications of them to various kinds of nonlinear systems can be found. The adaptive fuzzy scheme estimates the parameters comprising the fuzzy model representing the observation system. The proposed indirect adaptive fuzzy observer based on T-S fuzzy model can cope with not only unknown states but also unknown parameters. In the process of deriving adaptive law, the Lyapunov theory and Lipchitz condition are used. To show the performance of the proposed observation method, it is applied to an inverted pendulum on a cart.

  • PDF