• 제목/요약/키워드: Nonlinear model predictive control

검색결과 93건 처리시간 0.032초

퍼지 예측기를 이용한 비선형 일반 예측 제어기의 설계 (Design of a generalized predictive controller for nonlinear plants using a fuzzy predictor)

  • 안상철;김용호;권욱현
    • 제어로봇시스템학회논문지
    • /
    • 제3권3호
    • /
    • pp.272-279
    • /
    • 1997
  • In this paper, a fuzzy generalized predictive control (FGPC) for non-linear plants is proposed. In the proposed method, the receding horizon control is applied to the control part, while fuzzy systems are used for the predictor part. It is suggested that the fuzzy predictor is time-varying affine with respect to input variables for easy computation of control inputs. Since the receding horizon control can be obtained only with a predictor instead of a plant model, the fuzzy predictor is obtained directly from input-output data without identifying a plant model. A parameter estimation algorithm is used for identifying the fuzzy predictor. The control inputs of the FGPC are computed by minimizing a receding horizon cost function with predicted plant outputs. The proposed controller has a similar architecture to the generalized predictive control (GPC) except for the predictor synthesis method, and thus may possess inherent good properties of the GPC. Computer simulations show that the performance of the FGPC is satisfactory.

  • PDF

원전 증기발생기 수위제어를 위한 MPC 제어기 개발 (The devlepment of a MPC controller for water level control in the steam generator of a nuclear power plant)

  • 손덕현;한진욱;이환섭;이창구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.359-359
    • /
    • 2000
  • Generally, level control in the steam generator of a nuclear power plant is difficulty process control, because the low power operating can lead nonminimum phase characteristics(swell and shrink phenomenon) and flow measurement are unreliable and nonlinear characteristics. This paper presents a framework for solving this problem based on the constrained linear model predictive control and introduces the design of method for the level of the controller in the entire operating power of the steam generator, and compares with conventional PI controller.

  • PDF

나선 예측 모델에서의 비행체 하중수 및 각속도 최적 제어에 의한 제어성과 안정성 성능에 관한 연구 (A Study for Controllability, Stability by Optimal Control of Load and Angular Velocity of Flying Objects using the Spiral Predictive Model(SPM))

  • 왕현민
    • 제어로봇시스템학회논문지
    • /
    • 제13권3호
    • /
    • pp.268-272
    • /
    • 2007
  • These days many scientists make studies of feedback control system for stability on non-linear state and for the maneuver of flying objects. These feedback control systems have to satisfy trajectory condition and angular conditions, that is to say, controllability and stability simultaneously to achieve mission. In this paper, a design methods using model based control system which consists of spiral predictive model, Q-function included into generalized-work function is shown. It is made a clear that the proposed algorithm using SPM maneuvers for controllability and stability at the same time is successful in attaining our purpose. The feature of the proposed algorithm is illustrated by simulation results. As a conclusion, the proposed algorithm is useful for the control of moving objects.

예측제어를 이용한 차량의 롤 제어 (Active roll control based on predictive control)

  • 황수민;박영진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.1194-1198
    • /
    • 1993
  • Active roll control can improve handling and ride comfort. Dynamic characteristics of the hydraulic actuators for active suspension, which can be modeled as the 1'st order time lag system, hinders the performance improvement. To overcome this shortcoming a predictive controller is designed based on 3 d.o.f. linear vehicle handling model. The effect of this controller is studied through the simulation based on 10 d.o.f. nonlinear vehicle model and the results is compared to that of feedforward controller which uses lateral acceleration as control signal.

  • PDF

Adaptive Model Predictive Control for SI Engines Fuel Injection System

  • Gu, Qichen;Zhai, Yujia
    • 한국융합학회논문지
    • /
    • 제4권3호
    • /
    • pp.43-50
    • /
    • 2013
  • This paper presents a model predictive control (MPC) based on a neural network (NN) model for air/fuel ration (AFR) control of automotive engines. The novelty of the paper is that the severe nonlinearity of the engine dynamics are modelled by a NN to a high precision, and adaptation of the NN model can cope with system uncertainty and time varying effects. A single dimensional optimization algorithm is used in the paper to speed up the optimization so that it can be implemented to the engine fast dynamics. Simulations on a widely used mean value engine model (MVEM) demonstrate effectiveness of the developed method.

Application of Model Based Predictive Control with Kalman Filter to Natural Circulation Water Tube Boiler

  • Kim, Tae-Shin;Kwon, Oh-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1146-1151
    • /
    • 2005
  • This paper deals with the control problem of a natural circulation water tube boiler with constraint conditions. Some linearized models for the water tube boiler are proposed around some operating points, and the model based predictive control law is adopted to control the plant accounting for constraints. In this controller, the Kalman filter is used for the state estimation, and the controller is designed based on the linearized model. The control performance of the designed controller is exemplified via some nonlinear simulations around the operation point, which show it works well.

  • PDF

MODEL PREDOCTIVE CONTROL FOR NONLINRAE SYSTEM

  • Sugisaka, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.934-938
    • /
    • 1989
  • This paper considers the model predictive control (MPC) problems in nonlinear processes or systems. The MPC method determines the control law such that the predicted output based on the identified process model is equal to the reference output which consists of both the process output at current time and the setting value called as the command generator. In this paper, the nonlinear MPC software for a chemical reactor is developed and analized from the point of view of practical applications.

  • PDF

Design of Generalized Predictive Controller for Chaotic Nonlinear Systems Using Fuzzy Neural Networks

  • Park, Jong-tae;Park, Jin-bae;Park, Yoon-ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.172.4-172
    • /
    • 2001
  • In this paper, the Generalized Predictive Control(GPC) method based on Fuzzy Neural Networks(FNNs) is presented for the control of chaotic nonlinear systems without precise mathematical models. In our method, FNNs is used as the predictor whose parameters are tuned by the error between the actual output of nonlinear chaotic system and that of FNNs model. The parameters of GPC controller are adjusted via the gradient descent method where the difference between the actual output and the reference signal is used as a control error. Finally, computer simulation on the representative continuous-time chaotic system(Duffing system) is presented to demonstrate the effectiveness of our chaos control method.

  • PDF

Robust Predictive Feedback Control for Constrained Systems

  • Giovanini, Leonardo;Grimble, Michael
    • International Journal of Control, Automation, and Systems
    • /
    • 제2권4호
    • /
    • pp.407-422
    • /
    • 2004
  • A new method for the design of predictive controllers for SISO systems is presented. The proposed technique allows uncertainties and constraints to be concluded in the design of the control law. The goal is to design, at each sample instant, a predictive feedback control law that minimizes a performance measure and guarantees of constraints are satisfied for a set of models that describes the system to be controlled. The predictive controller consists of a finite horizon parametric-optimization problem with an additional constraint over the manipulated variable behavior. This is an end-constraint based approach that ensures the exponential stability of the closed-loop system. The inclusion of this additional constraint, in the on-line optimization algorithm, enables robust stability properties to be demonstrated for the closed-loop system. This is the case even though constraints and disturbances are present. Finally, simulation results are presented using a nonlinear continuous stirred tank reactor model.

MPC를 이용한 원전 증기발생기의 수위제어에 관한 기초연구 (A Study on the Level Control in the Steam Generator of a Nuclear Power Plant by using Model Predictive Controller)

  • 손덕현;이창구;한진욱;한후석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2495-2497
    • /
    • 2000
  • Level control in the steam generator of a nuclear power plant is important process. But, the low power operation of nuclear power plant causes nonlinear characteristics and non minimum phase characteristics (swell and shrink), change of delay. So, we can't lead good results with conventional PID controller. Particularly, the design of controller with constraints is necessary. This paper introduces MPC(Model Predictive Control) with constraints and designs a good performance MPC controller in spite of the input constraints and nonlinear characteristics, non-minimum phase characteristics

  • PDF