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1. INTRODUCTION
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Abstract: This paper deals with the control problem of a natural circulation water tube boiler with constraint conditions. Some
linearized models for the water tube boiler are proposed around some operating points, and the model based predictive control law
is adopted to control the plant accounting for constraints. In this controller, the Kalman filter is used for the state estimation, and
the controller is designed based on the linearized model. The control performance of the designed controller is exemplified via
some nonlinear simulations around the operation point, which show it works well.
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The industrial boilers are widely used in the thermal power
plant, central heating systems, etc. The boiler system is a kind
of typical nonlinear multivariable systems, and so it is known
difficult to be controlled. Åström and Bell have proposed low 
order dynamic models for drum boiler-turbine-alternator units
[1-3], and they are utilized to design various controllers for the
boiler systems. However, this model is restricted to the drum 
boiler and not valid for another type of boiler, the water tube
boiler. A nonlinear dynamic model for the water tube boiler
has been proposed by Kim and Kwon in [4]. Although they
have suggested an LQ regulator design using the model, it is
not practical to be applied since it is a state-feedback law and
has not accounted for constraint conditions. 
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In industrial fields, most plants have many constraint

conditions. For example, because of physical limits, industrial 
boilers have rate and magnitude constraints of each actuator
and also state constraints such as temperature and pressure etc.
Furthermore, for the improved stability and performance such
as energy efficiency increase, we should control industrial 
boilers in specific constraint conditions. Therefore we need to
design a controller accounting for constraints. The predictive
control law is to consider systematically constraint conditions
at controller design step and also to design optimal control. It
is called as MBPC(Model Based Predictive Control),
RHC(Receding Horizon Control), GPC(Generalized
Predictive Control), DMC(Dynamic Matrix Control),
SOLO(Sequential Open Loop Optimizing control), etc., and
has been researched at many variable fields [5-8].
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In this paper we will propose an MBPC design with
Kalman filter to control the natural circulation water tube
boiler, and exemplify the performance of the controller via 
some nonlinear simulations using Matlab/Simulink and
s-functions.

2. WATER TUBE BOILER MODEL

In this paper, a natural circulation water tube boiler is to be
taken as the plant. A plant modeling for the boiler is carried
out in [4], where the accomplished boiler model is as follows: 
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Fig. 2.1 A simple schematic of risers, drum and downcomers

The nomenclature for the model is summarized in
Appendix. Plant parameters are taken as follows: ,355.3 3mVr

.51190,15790,43.5,94.10 33 kgmkgmmVmV trdcdrun
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The steam tables were approximated by quadratic
approximations in the simulation. We suppose that the
temperature of feedwater is 173.7 . Fig 2.1 shows the 
simplified water tube boiler model concept for modeling [1-3].

3. MBPC WITH KALMAN FILETER FOR THE

BOILER MODEL 

3.1 Basic concept of predictive control

The predictive control is a control strategy to calculate
control inputs to minimize the cost function assumed
previously using receding horizon technique. In Fig 2.1,

and
2

are called as the control horizon and the prediction

horizon, respectively. In the time k, let us gain control inputs
as follows:

uN
N

).1(,),1(),( uNkukuku                      (3.1)

Then we select the fist control inputs and use it

during the [k,k+1] time interval. In the next time k+1, each
control horizon and receding horizon is added by each

and from the time k+1. And also we gain control inputs

through to solve the optimization problem of cost function and
select the first inputs and use it during the [k+1,k+2]

time interval. In next times, we also repeat continuously the 
same procedure. Fig 3.1 shows the basic concept of predictive
control procedure.

)(ku

uN

2N

)1(ku

Fig. 3.1 A basic concept of predictive control

3.2 MBPC algorithm with Kalman filter for the boiler

The objective model used by MBPC is assumed that it is
represented by a discrete time-invariant state space model with
the controllability. This model includes the measurement noise
and the plant noise. Eq. (3.2) represents the linearized plant
model including noises shown in Fig 3.3. 

),()()()1( kwGBkuBkxAkx
).()()()( kvRkuDkxCky                     (3.2)

Here, is the input vector, )(u )(y is the output vector, )(x
is the state vector of the system, is the zero mean white

Gaussian measurement noise and is the zero mean white

Gaussian plant noise. In Eq. (3.2), the input matrix

)(v
)(w

D  exists
in general. But when designing MBPC, it is impossible to
design the controller directly considering the D term, i.e., the
feedforward term. Thus to consider the D term, the model
should be augmented properly using the difference operator

. Fig 3.2 shows the augmented system and is able to be 
represented by Eq. (3.3).
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In Eq. (3.3), 1 is the backward shift operator. And Eq. (3.3)

can be also replaced by Eq. (3.4) as follow:

q
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Fig. 3.2 Augmented system

Fig. 3.3 Block diagram for the MBPC 

The output prediction vector of the j step is represented by
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Let us take the expected value of . Then Eq. (3.5) is

to be replaced by Eq. (3.6) since ,
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In Eq. (3.6), the state estimation vector, can be given by
Kalman filter [9].

x̂
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         (3.15)

).()(ˆ)( kxkxke                                (3.7)
Eq. (3.15) is a cost function of the quadratic form. Thus, if the 
system has no constraints, we can get an optimal solution
through the least square method as follows: Eq. (3.7) defines the state estimation error. Kalman filter is

designed to minimize the state estimation error. The filter is
constructed as follows:

).()( 1 frHIHHu TT                     (3.16)

.)(ˆ)()()()(ˆ)1(ˆ kxCkykLkuBkxAkx         (3.8)
Then, we use only the first control increment at MBPC. Thus 
control inputs used really is as follows:

Here, the Kalman filter gain is calculated by the

discrete Riccati equation as Eq. (3.9).
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where TT HIHHIK 1)(00 .

If the system has constraints, we can calculate an optimal
control increment considering constraint conditions through
the quadratic programming.where .)()()(

1

v
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TT CkCPGACkPkL         (3.10) In the performance index of Eq. (3.15),  do 

not have an effect on the optimal solution because it is not a
function of

)()( frfr T

u . Thus, the optimal solution  can be
represented as follows:

*uTo gain Kalman filter gain , system matrices)(kL A , B ,

, and variancesD w
,

wv
,

v
 and G have to be known 

in advance. The predictive control law is the problem which
finds control inputs minimizing the performance index, or cost 
function as follows:
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The form of the quadratic programming is 

Here,  and are the prediction horizons,  is the

control horizon, 
1N 2N uN

is a weighting about control increment,
and is the reference input. When ,

, Eq. (3.11) can be represented as follows: 
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where P  positive definite.

Eq. (3.19) is implemented as a QP command by Matlab with
the form of QP command.
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where ,)()( 21
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,

Comparing Eq (3.18) with Eq. (3.19), we can get the
following solution: 
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The output prediction vector is to be represented by Eq.

(3.13) from Eq. (3.6):
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The constraint condition of Eq. (3.21) is expressed as buA .
Let us  and nRku )(

.)( maxmin ukuu                           (3.22)
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Eq. (3.22) is the constraint condition for the control increment.
Eq. (3.23) and Eq. (3.24) are to express Eq. (3.22) as the 
matrix inequality forms of . Here I  is anbuA nn
identity marix.

Let us define

).(ˆ kxFf                                     (3.14)

and substituting Eqs. (3.13)~ (3.14) into Eq. (3.12), we can get
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Eq. (3.25) is the constraint condition for the control amplitude.
Eq. (3.26) is to represent Eq. (3.25) as an inequality for the
control increment.
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Eq. (3.27) and Eq. (3.28) are to express Eq. (3.26) as the 
matrix inequality form of .buA
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Eq. (3.23)~(3.24) and Eq. (3.27)~(3.28) can be represented at 
once by the matrix inequality form as follows:

,buA                                      (3.29)
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4. SIMULATION

To apply the MBPC to the nonlinear boiler system, the
model should be linearized at some operating points. Let us 
take an operating point of the natural circulation water tube
boiler plant as given in Table 4.1. The linearized model of the

objective boiler model can be derived at the operating point as 
follows:

,uBxAx
.uDxCy

Table 4.1 The operating point

1926.4p 2245.7wdV 5332.0ma
807.4sq 807.4fwq 19.9999rQ

Table 4.2 The linearized model at the operating point

A
03950403.0000179506.0

02705983.0000103049.0

0000001982.0

B
00000190.000002624.000013685.0

00000158.000121701.000168927.0

00000087.000029170.000152088.0

C
000

03141064.000593877.000371640.0

001

D
001

000

000

Table 4.2 shows coefficient matrices of the linearized state
space model at the operating point of Table 4.1. In Table 4.2,
the input, output, and state variables are taken as follows:

- state variables : ,,, 321 mwd axVxpx
- input variables : ,,, 321 rfws Quququ
- output variables : ,,, 321 sqylypy
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Due to the limit constraints of actuators, it is assumed that
there exist input constraints as follows:

,35.035.0),/(160 11 uskgu
,9.09.0),/(160 22 uskgu

.10001000),/(350000 33 uskJu

The following values are chosen as parameters for the
simulation:
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The sampling time for discrete system is taken as 1sec.

And the pressure reference input is a step input changed

+0.2 MPa at 50sec. The drum level reference input maintains
at the operating point. And the steam mass flow rate reference

input is a step input changed +0.2 at 800sec. The
following figures show the simulation results.

sT

skg /

The simulation results of Figs. 4.1~3.3 show good control 
performance. However, it can be seen that there exists a little
offset error at Figs. 4.1~4.3 due to the difference between the
nonlinear model and the linearized model at the specific
operating point. Fig. 4.4 shows the estimation performance of
the discrete Kalman filter, and it can be seen that it works very
well. As shown in Figs. 4.5~4.7, there is no differences
between the control inputs and the actuater outputs except for
an effect of the noise, which means that the MBPC is designed
completely accounting for input constraint conditions.
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Fig. 4.1 Reference input(real line) and output response(dashed
line) of the pressure in the drum( )MPa

Fig. 4.5 Control input(real line) and actuator output(dashed
line) of the steam mass flow rate( )skg /
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Fig. 4.2 Reference input(real line) and output response(dashed
line) of the drum level( m )

Fig. 4.6 Control input(real line) and actuator output(dashed
line) of the feedwater mass flow rate( )skg /
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Fig. 4.3 Reference input(real line) and output response(dashed
line) of the steam mass flow rate( )skg /

Fig. 4.7 Control input(real line) and actuator output(dashed
line) of the heat flow rate to the risers( )skJ /
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Fig. 4.8 The structure of MBPC with Kalman filter
implemented by Matlab/Simulink

5. CONCLUSIONS

In this paper, we have dealt a control problem of a water
tube boiler for power plants. The boiler model is proposed in 
[4], and the MBPC with Kalman filter is adopted to control the
boiler plant accounting for constraint conditions efficiently.
We have proposed a linearized model at an operating point
and designed the MBPC. The performance of the control
system is checked via some nonlinear simulations, which
exemplify the control law works well. It requires further study
to get rid of or reduce offset error.
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APPENDIX: Nomenclature

p : pressure of steam in drum( )MPa
t : time

ws , : the specific density of steam, water and

feedwater( )3/ mkg

fwws HHH ,, : the specific enthalpy of steam, water and

feedwater( )kgkJ /

cH : the specific enthalpy of condensation (= )ws HH

stwt VV , : the total volume of water and steam in the

risers, drum and downcomers( )3m
tV : the total volume of the risers, drum and 

downcomers(=
stwt VV )

tm : the total mass of the risers, drum and downcomers( )kg

rm : the mass of the risers( kg )

pC : the specific heat of the metal( )CkgkJ /

T : the temperature of metal( ) (=the temperature of theC
steam and the water in the risers, drum and downcomers)

rQ : the heat flow rate to the risers( )skJ /

sq : the steam mass flow rate( )skg /

fwq : the feedwater mass flow rate( )skg /

drumV : the volume of the drum( )3m

dcr VV , : the volume of the risers and downcomers( )
3m

wdV : the volume of water in the drum ( )3m

va : the average steam-volume fraction in the flow at the riser

ma : the steam-mass fraction in the flow at the riser outlet

rq : the mass flow rate of the risers( )skg /

dcq : the mass flow rate of the downcomers( )skg /

l : the drum water level( m )

A : the wet surface of the drum( )2m
k : the friction coefficient of the downcomer
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