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Abstract: This paper deals with the control problem of a natural circulation water tube boiler with constraint conditions. Some
linearized models for the water tube boiler are proposed around some operating points, and the model based predictive control law
is adopted to control the plant accounting for constraints. In this controller, the Kalman filter is used for the state estimation, and
the controller is designed based on the linearized model. The control performance of the designed controller is exemplified via
some nonlinear simulations around the operation point, which show it works well.
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1. INTRODUCTION

The industrial boilers are widely used in the thermal power
plant, central heating systems, etc. The boiler system is a kind
of typical nonlinear multivariable systems, and so it is known
difficult to be controlled. Astrom and Bell have proposed low
order dynamic models for drum boiler-turbine-alternator units
[1-3], and they are utilized to design various controllers for the
boiler systems. However, this model is restricted to the drum
boiler and not valid for another type of boiler, the water tube
boiler. A nonlinear dynamic model for the water tube boiler
has been proposed by Kim and Kwon in [4]. Although they
have suggested an LQ regulator design using the model, it is
not practical to be applied since it is a state-feedback law and
has not accounted for constraint conditions.

In industrial fields, most plants have many constraint
conditions. For example, because of physical limits, industrial
boilers have rate and magnitude constraints of each actuator
and also state constraints such as temperature and pressure etc.
Furthermore, for the improved stability and performance such
as energy efficiency increase, we should control industrial
boilers in specific constraint conditions. Therefore we need to
design a controller accounting for constraints. The predictive
control law is to consider systematically constraint conditions
at controller design step and also to design optimal control. It

is called as MBPC(Model Based Predictive Control),
RHC(Receding  Horizon  Control), = GPC(Generalized
Predictive  Control), DMC(Dynamic Matrix Control),

SOLO(Sequential Open Loop Optimizing control), etc., and
has been researched at many variable fields [5-8].

In this paper we will propose an MBPC design with
Kalman filter to control the natural circulation water tube
boiler, and exemplify the performance of the controller via
some nonlinear simulations using Matlab/Simulink and
s-functions.

2. WATER TUBE BOILER MODEL

In this paper, a natural circulation water tube boiler is to be
taken as the plant. A plant modeling for the boiler is carried
out in [4], where the accomplished boiler model is as follows:
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Fig. 2.1 A simple schematic of risers, drum and downcomers

The nomenclature for the model is summarized in
Appendix. Plant parameters are taken as follows: 1/ =3355n7,

Vi =10.94m, V. =5.43m*, m, =15790kg, m, = 51190kg.
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The steam tables were approximated by quadratic
approximations in the simulation. We suppose that the
temperature of feedwater is 173.7°C. Fig 2.1 shows the
simplified water tube boiler model concept for modeling [1-3].

3. MBPC WITH KALMAN FILETER FOR THE
BOILER MODEL

3.1 Basic concept of predictive control

The predictive control is a control strategy to calculate
control inputs to minimize the cost function assumed
previously using receding horizon technique. In Fig 2.1, N,

and N, are called as the control horizon and the prediction

horizon, respectively. In the time k, let us gain control inputs
as follows:

u(k),u(k +1),-,u(k+ N, ~1). (3.1

Then we select the fist control inputs y(k) and use it
during the [kk+1] time interval. In the next time k+1, each
control horizon and receding horizon is added by each y,
and N,

through to solve the optimization problem of cost function and
select the first inputs (% +1) and use it during the [k+1,k+2]
time interval. In next times, we also repeat continuously the
same procedure. Fig 3.1 shows the basic concept of predictive
control procedure.

from the time k+1. And also we gain control inputs

Past Future

Reference Trajectory r (k)

o
5 Predictive Outputs y(k)
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Fig. 3.1 A basic concept of predictive control

3.2 MBPC algorithm with Kalman filter for the boiler

The objective model used by MBPC is assumed that it is
represented by a discrete time-invariant state space model with
the controllability. This model includes the measurement noise
and the plant noise. Eq. (3.2) represents the linearized plant
model including noises shown in Fig 3.3.

X(k+1) = Ax(k)+ Bu(k)+ BGw(k),
(k)= Cx(k)+ Du(k)+ Rv(k). (3.2)
Here, () is the input vector, y(\) is the output vector, x()
is the state vector of the system, y(.) is the zero mean white
Gaussian measurement noise and () is the zero mean white
Gaussian plant noise. In Eq. (3.2), the input matrix D exists
in general. But when designing MBPC, it is impossible to
design the controller directly considering the D term, i.e., the

feedforward term. Thus to consider the D term, the model
should be augmented properly using the difference operator
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A. Fig 3.2 shows the augmented system and is able to be
represented by Eq. (3.3).

{x(k + 1)} _ {A B }{x(k)} . HAu(k) . {B G }w o,
uk+D)| |0 1 (ut)| |1 0
_le p1*®|, % (3.3)
y(ky=[C D]L(k)} + Rv(k),
where Azl—qfl
q—l

In Eq. (3.3), ¢7' is the backward shift operator. And Eq. (3.3)
can be also replaced by Eq. (3.4) as follow:

x(k+1) = Ax(k) + BAu(k) + Gw(k),

y(k) = Cx(k)+ Rv(k), (3.4)
where
x(- A B 0 _
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0
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1 Kalman Filter

Fig. 3.3 Block diagram for the MBPC

The output prediction vector of the j step is represented by

J-1
y(k+ j)=CA’x(k)+ Y. CAY""V BAu(k +1i)
i=0
IS (3.5)
+ D CAY TV Gw(k +1)
i=0

+ Rv(k + j).

Let us take the expected value of y(k+ j)- Then Eq. (3.5) is
to be replaced by Eq. (3.6) since E[V(~)]:O, E[W(-)]:O,
E[y(k+ p= 5k +j)» E[x(k)]=%(k)-

. ! -
P+ j)=CAZ(k)+ Y. CAY™ BAu(k + ). (3.6)

i=0
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In Eq. (3.6), the state estimation vector, % can be given by
Kalman filter [9].

e(k) = #(k) — x(k). (3.7)

Eq. (3.7) defines the state estimation error. Kalman filter is
designed to minimize the state estimation error. The filter is

constructed as follows:

£(k +1) = A%(k) + BAu(k) + L(k)[y(k) - C(k)] (3.8)

Here, the Kalman filter gain [(k) is calculated by the
discrete Riccati equation as Eq. (3.9).

P(k+1)=[4- N(k)C]P()[4-Nk)C]

+Go,G" + N(k)o N (k) Go, N7 (k) 39)
~Nb)o, G,

where  N(k)=[4P(k)C" +Go,, [cPiC +0,]

L) =[Pt)C” + 4"Go,, [cPi)C + 0, (3.10)

To gain Kalman filter gain [(k), system matrices 4, B,
D, and variances c, o0, O, and G have to be known

in advance. The predictive control law is the problem which
finds control inputs minimizing the performance index, or cost
function as follows:

Juy= Y [rtk+ )=tk + HF + 23 [Buti+ pF. 1D

J=N; Jj=0

Here, N, and N, are the prediction horizons, N, is the

control horizon, 4 is a weighting about control increment,
and p(k+j) is the reference input. When ;> N, -

Au(k + j)=0, Eq. (3.11) can be represented as follows:

J(Au)=(r=»)" (r=3)+AAu" Au, (3.12)
where = [r(k+ Nl)-~-r(k+N2)]T,
P=[Pk+ Nk + N[ »
Au = [Au(k) - Au(k+ N, D).

The output prediction vector 3

(3.13) from Eq. (3.6):

is to be represented by Eq.

$ = Fi(k)+ Hau(k), (3.13)
cA™ hy | hy
where . L o
F= o, H=| : S
cA™ th,l hNZ.N
b CA™B,j>i
h 0,j<i
Let us define
f = Fi(k). (3.14)

and substituting Eqgs. (3.13)~ (3.14) into Eq. (3.12), we can get
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J(Au)= A" |H" H + AI = 2(r — f) HAu
+(r="(r=1).

(3.15)

Eq. (3.15) is a cost function of the quadratic form. Thus, if the
system has no constraints, we can get an optimal solution
through the least square method as follows:
Au=HTH+AD"H (r-f). (3.16)
Then, we use only the first control increment at MBPC. Thus
control inputs used really is as follows:

u(k)=u(k-1)+K(r- f), G.17)

where K =[I 0 O\H"H+A)'H".

If the system has constraints, we can calculate an optimal
control increment considering constraint conditions through
the quadratic programming.

In the performance index of Eq. (3.15), (r— f)"(r—f) do
not have an effect on the optimal solution because it is not a
function of Ay . Thus, the optimal solution Ax" can be
represented as follows:

. argmin
u =
Au(k)
_argmin { 1

= o 12 [H"H + atlhu— (- f) HAu}.

(A" [HT H + 21| Au=2(r = £) HAu | G18)

The form of the quadratic programming is

. argmin
_ e {%xTPx+qTx}, subjectto Ax < b, (.19)

X

where P positive definite.

Eq. (3.19) is implemented as a QP command by Matlab with
the form of QP command.

x" =OP(P,q,4,b). (3.20)

Comparing Eq (3.18) with Eq. (3.19), we can get the
following solution:

Au" =QP(P,q,A,b), (3:21)

where P=H"H+Al,q=-H" (r- f).

The constraint condition of Eq. (3.21) is expressed as AAu <b .
Letus Au(k)e R" and
(3.22)

Au, <Au(k)<Au,, .

min

Eq. (3.22) is the constraint condition for the control increment.
Eq. (3.23) and Eq. (3.24) are to express Eq. (3.22) as the
matrix inequality forms of AAu<b. Here | is an nxn

identity marix.
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I 0 0 Au(k) Au,. objective boiler model can be derived at the operating point as
0 7 -~ 0| Autk+l) | |Au,, (3.23) follows:

P 5 5 B i=Ax+ Bu,
0 0 I Au(k+Nu —1) Aumax y:Cx+Du.

10 0 Au(k) Au,,

0 7 0 Au(k+1) Au_. (3.24) Table 4.1 The operating point

S : ' p=41926 | V,,=72245 | a,=05332

00 I Autk+N,-1)| | Au,,,

q, =4.807 q 4 =4.807 0.=9999.19

Eq. (3.25) is the constraint condition for the control amplitude.
Eq. (3.26) is to represent Eq. (3.25) as an inequality for the
control increment.

(3.25)
(3.26)

umin < Ll(k) < Z’Imax’

Uy —u(k=1)<Au(k) <u,, —u(k-1).

Eq. (3.27) and Eq. (3.28) are to express Eq. (3.26) as the
matrix inequality form of AAu <5 .

0 Au(k) U, —ulk=1)
1 0 Au(k+1) u,, —u(k—1) (3.27)
I 1 I Au(k+N, -1 | |u,, —u(k-1)
1 0 0 Au(k) u, . —u(k—-1)
I I 0| Auk+1) u,, —u(k=1y| (3.28)
I I I| Au(k+N,-1) u, . —u(k-1)

Eq. (3.23)~(3.24) and Eq. (3.27)~(3.28) can be represented at
once by the matrix inequality form as follows:

AAu<b, (3.29)
where [ is nN, xnN, identity matrix, AueR™.
I o, I 11 I
A= _]! b= (DZ — g (I) j j R"NUX”NH
A R e O
_QT q)4 . . . .
000 I
_Aumax _Aumin
A —Au_.
CDI _ umax c RnN” , q)z — f"mm c RnN" ,
_Aumax - Aumin
7umax —u(k-1) —u,, +ulk=1)
u  —u(k—1 —u_ . +u(k—1
@3 — max :( ) c RnN“ , CD4 — umm :u( ) c R"N” .
| Uy —u(k—1) —u . +u(k-1)

4. SIMULATION

To apply the MBPC to the nonlinear boiler system, the
model should be linearized at some operating points. Let us
take an operating point of the natural circulation water tube
boiler plant as given in Table 4.1. The linearized model of the

1149

Table 4.2 The linearized model at the operating point

0.00001982 0 0
A 0.00103049 0 —0.02705983
0.00179506 0 —0.03950403
~0.00152088 —0.00029170 0.00000087
B ~0.00168927  0.00121701  0.00000158
0.00013685  0.00002624  0.00000190
1 0 0
C ~0.00371640 0.00593877 0.03141064
0 0 0
00 0
D 00 0
100

Table 4.2 shows coefficient matrices of the linearized state
space model at the operating point of Table 4.1. In Table 4.2,
the input, output, and state variables are taken as follows:

- state variables : x = p,x, =V,

W

d > x} = am’
= Qr’
- output variables : y =p,y, =1,y, =4,

- input variables : Uy =g, Uy =g, U

Xy u N
X=X |, U=|Uy |, V=V, |
X3 U V3

Due to the limit constraints of actuators, it is assumed that
there exist input constraints as follows:

0<u, <16(kg/s),—0.35<1i, <0.35,
0<u, <16(kg/s),—0.9 <11, <0.9,
0 < u, <35000(kJ / ), — 1000 < 11, <1000.

The following values are chosen as parameters for the
simulation:
N, =1,N, =120,N, = 2,1 =0.00001,7, =1sec,
1 0 0 1 0 0
R=0.0010 0.1 0,G=0.001l10 1 0 |
0 0 1 0 0 100
1 00 1 00 0 00
c,=0.0010 1 0|0,=0.0040 1 0|0, =|0 0 Of
0 0 1 0 0 1 0 00
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The sampling time 7 for discrete system is taken as Isec.

4 T T T T T T T T T

And the pressure reference input is a step input changed = | | x, and 3 | | |
+0.2 MPa 4t 50sec. The drum level reference input maintains 3L --p--p--7 :_‘L:i* R EEEEEE R
at the operating point. And the steam mass flow rate reference — L e e s
input is a step input changed +0.2 kg /s at 800sec. The °r T:;‘:d 2 [ A
following figures show the simulation results. P R T S S R SR R

The simulation results of Figs. 4.1~3.3 show good control | | | | | 1 1 : :
performance. However, it can be seen that there exists a little P O S S S S S
offset error at Figs. 4.1~4.3 due to the difference between the ! ! ! ! ! ! ! ! !
nonlinear model and the linearized model at the specific T
operating point. Fig. 4.4 shows the estimation performance of | | | | | | | | |
the discrete Kalman filter, and it can be seen that it works very ) T o
well. As shown in Figs. 4.5~4.7, there is no differences Lo X oand % Lo
between the control inputs and the actuater outputs except for 08— 0 o0 B0 oo T aw o0 1000
an effect of the noise, which means that the MBPC is designed time(sec)

completely accounting for input constraint conditions.

Fig. 4.4 The sate values x (real line) the state estimation
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Fig. 4.1 Reference input(real line) and output response(dashed time(see)
line) of the pressure in the drum( AMPa )

Fig. 4.5 Control input(real line) and actuator output(dashed
line) of the steam mass flow rate(kg /s )
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Fig. 4.2 Reference input(real line) and output response(dashed

line) of the drum level(m ) Fig. 4.6 Control input(real line) and actuator output(dashed

line) of the feedwater mass flow rate( kg /s )
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Fig. 4.3 Reference input(real line) and output response(dashed Fig. 4.7 Control input(real line) and actuator output(dashed
line) of the steam mass flow rate(kg /s ) line) of the heat flow rate to the risers(kJ /s )
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with KF
for TS_Boiler

Controller cutput

Drscaete Fiter

Fig. 4.8 The structure of MBPC with Kalman filter
implemented by Matlab/Simulink

5. CONCLUSIONS

In this paper, we have dealt a control problem of a water
tube boiler for power plants. The boiler model is proposed in
[4], and the MBPC with Kalman filter is adopted to control the
boiler plant accounting for constraint conditions efficiently.
We have proposed a linearized model at an operating point
and designed the MBPC. The performance of the control
system is checked via some nonlinear simulations, which
exemplify the control law works well. It requires further study
to get rid of or reduce offset error.
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APPENDIX: Nomenclature

p : pressure of steam in drum( MPa )

t:time

P., p,,: the specific density of steam, water and
feedwater( kg /m®)

H,H, H,:
feedwater(kJ / kg )

H _: the specific enthalpy of condensation (= H -~ H )

|4

wit

the specific enthalpy of steam, water and

V., : the total volume of water and steam in the

risers, drum and downcomers(m* )

V: the total volume of the risers, drum and

downcomers(= V., + K,)

m, : the total mass of the risers, drum and downcomers(kg )
m, : the mass of the risers(kg )

Cp : the specific heat of the metal( 4./ / kg°C )

T : the temperature of metal(°C') (=the temperature of the

steam and the water in the risers, drum and downcomers)
O, : the heat flow rate to the risers(kJ /s )

q,: the steam mass flow rate( kgls )

qs° the feedwater mass flow rate(kg /s )

V o - the volume of the drum( m*)

V.V, the volume of the risers and downcomers( m’ )

V., the volume of water in the drum ( m’)

a,: the average steam-volume fraction in the flow at the riser
a,: the steam-mass fraction in the flow at the riser outlet

g, : the mass flow rate of the risers(kg /s )

q,.: the mass flow rate of the downcomers(kg /s )

[: the drum water level(m )
A : the wet surface of the drum(m?)
k : the friction coefficient of the downcomer
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