• 제목/요약/키워드: Nonlinear model predictive control

검색결과 93건 처리시간 0.026초

A Model Predictive Controller for Nuclear Reactor Power

  • Na Man Gyun;Shin Sun Ho;Kim Whee Cheol
    • Nuclear Engineering and Technology
    • /
    • 제35권5호
    • /
    • pp.399-411
    • /
    • 2003
  • A model predictive control method is applied to design an automatic controller for thermal power control in a reactor core. The basic concept of the model predictive control is to solve an optimization problem for a finite future at current time and to implement as the current control input only the first optimal control input among the solutions of the finite time steps. At the next time step, the second optimal control input is not implemented and the procedure to solve the optimization problem is then repeated. The objectives of the proposed model predictive controller are to minimize the difference between the output and the desired output and the variation of the control rod position. The nonlinear PWR plant model (a nonlinear point kinetics equation with six delayed neutron groups and the lumped thermal-hydraulic balance equations) is used to verify the proposed controller of reactor power. And a controller design model used for designing the model predictive controller is obtained by applying a parameter estimation algorithm at an initial stage. From results of numerical simulation to check the controllability of the proposed controller at the $5\%/min$ ramp increase or decrease of a desired load and its $10\%$ step increase or decrease which are design requirements, the performances of this controller are proved to be excellent.

제약조건을 갖는 다변수 모델 예측 제어기의 비선형 보일러 시스템에 대한 적용 (Constrained multivariable model based predictive control application to nonlinear boiler system)

  • 손원기;이명의;권오규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.160-163
    • /
    • 1996
  • This paper deals with MCMBPC(Multivariable Constrained Model Based Predictive Controller) for nonlinear boiler system with noise and disturbance. MCMBPC is designed by linear state space model obtained from some operating point of nonlinear boiler system and Kalman filter is used to estimate the state with noise and disturbance. The solution of optimization of the cost function constrained on input and/or output variables is achieved using quadratic programming, viz. singular value decomposition (SVD). The controller designed is shown to have excellent tracking performance via simulation applied to nonlinear dynamic drum boiler turbine model for 16OMW unit.

  • PDF

Control of Two-Link Manipulator Via Feedback Linearization and Constrained Model Based Predictive Control

  • Son, Won-Kee;Park, Jin-Young;Ryu, Hee-Seb;Kwon, Oh-Kyu
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제2권4호
    • /
    • pp.221-227
    • /
    • 2000
  • This paper combines the constrained model predictive control with the feedback linearization to solve a nonlinear system control problem with input constraints. The combined approach consists of two steps: Firstly, the nonlinear model is linearized by the feedback linearization. Secondly, based on the linearized model, the constrained model predictive controller is designed taking input constraints into consideration. The proposed controller is applied to two link robot system, and tracking performances of the controller are investigated via some simulations, where the comparisons are done for the cases of unconstrained, constrained input in feedback linearization.

  • PDF

모델 예측 기법 기반 무인 항공기의 편대 비행 제어 알고리즘 (Formation Flight Control of Unmanned Aerial Vehicles Using Model Predictive Control)

  • 박재만;신종호;김현진
    • 제어로봇시스템학회논문지
    • /
    • 제14권12호
    • /
    • pp.1212-1217
    • /
    • 2008
  • This paper studies the feasibility of using the nonlinear model predictive control as a formation flight control algorithm for unmanned aerial vehicles. The optimal control inputs for formation flight are calculated through the cost function which incorporates the relative positions of the individual vehicles to maintain a desired formation and also the inequality constraints on inputs and states using the Karush-Kuhn-Tucker conditions. In the nonlinear model predictive control setting, the optimal control inputs are implemented in a receding horizon manner, which is suitable for dealing with dynamic constraints. Numerical simulations are executed for the validation of the proposed scheme.

Multivariable Nonlinear Model Predictive Control of a Continuous Styrene Polymerization Reactor

  • Na, Sang-Seop;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1999년도 제14차 학술회의논문집
    • /
    • pp.45-48
    • /
    • 1999
  • Model predictive control algorithm requires a relevant model of the system to be controlled. Unfortunately, the first principle model describing a polymerization reaction system has a large number of parameters to be estimated. Thus there is a need for the identification and control of a polymerization reactor system by using available input-output data. In this work, the polynomial auto-regressive moving average (ARMA) models are employed as the input-output model and combined into the nonlinear model predictive control algorithm based on the successive linearization method. Simulations are conducted to identify the continuous styrene polymerization reactor system. The input variables are the jacket inlet temperature and the feed flow rate whereas the output variables are the monomer conversion and the weight-average molecular weight. The polynomial ARMA models obtained by the system identification are used to control the monomer conversion and the weight-average molecular weight in a continuous styrene polymerization reactor It is demonstrated that the nonlinear model predictive controller based on the polynomial ARMA model tracks the step changes in the setpoint satisfactorily. In conclusion, the polynomial ARMA model is proven effective in controlling the continuous styrene polymerization reactor.

  • PDF

지종교체 공정의 Bilinear 모델 예측제어 (Bilinear Model Predictive Control for Grade Change Operations in Paper Mills)

  • 추연욱;여영구;강홍
    • 펄프종이기술
    • /
    • 제37권1호
    • /
    • pp.61-66
    • /
    • 2005
  • The grade change operations In paper mills exhibit inherent nonlinear dynamic characteristics. For this reason, the conventional model predictive control techniques based on linear process models are not adequate for the grade change operations. In this paper, a bilinear model for the nonlinear grade change processes was presented first and optimal input variables were calculated by using one-step-ahead predictive control method. Numerical simulations showed that the control performance lied within acceptable range and that the bilinear model predictive control scheme was highly promising control strategy for the grade change operations.

NNGPC를 이용한 유압모터의 고정도 위치제어 (Accurate Position Control of Hydraulic Motor Using NNGPC)

  • 박동재;안경관;이수한
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.143-143
    • /
    • 2000
  • A neural net based generalized predictive control(NNGPC) is presented for a hydraulic servo position control system. The proposed scheme employs generalized predictive control, where the future output being generated from the output of artificial neural networks. The proposed NNGPC does not require an accurate mathematical model for the nonlinear hydraulic system and takes less calculation time than GPC algorithm if the teaming of neural network is done. Simulation studies have been conducted on the position control of a hydraulic motor to validate and illustrate the proposed method.

  • PDF

Nonparametric Nonlinear Model Predictive Control

  • Kashiwagi, Hiroshi;Li, Yun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1443-1448
    • /
    • 2003
  • Model Predictive Control (MPC) has recently found wide acceptance in industrial applications, but its potential has been much impounded by linear models due to the lack of a similarly accepted nonlinear modelling or data based technique. The authors have recently developed a new method for obtaining Volterra kernels of up to third order by use of pseudorandom M-sequence. By use of this method, nonparametric NMPC is derived in discrete-time using multi-dimensional convolution between plant data and Volterra kernel measurements. This approach is applied to an industrial polymerisation process using Volterra kernels of up to the third order. Results show that the nonparametric approach is very efficient and effective and considerably outperforms existing methods, while retaining the original data-based spirit and characteristics of linear MPC.

  • PDF

비선형 시스템을 위한 퍼지모델 기반 일반예측제어 (Fuzzy Model Based Generalized Predictive Control for Nonlinear System)

  • 이철희;서선학
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 D
    • /
    • pp.697-699
    • /
    • 2000
  • In this paper, an extension of model predictive controller for nonlinear process using Takagi-Sugeno(TS) fuzzy model is proposed Since the consequent parts of TS fuzzy model comprise linear equations of input and output variables. it is locally linear, and the Generalized Predictive Control(GPC) technique which has been developed to control Linear Time Invariant(LTI) plants, can be extended as a parallel distributed controller. Also fuzzy soft constraints are introduced to handle both equality and inequality constraints in a unified form. So the traditional constrained GPC can be transferred to a standard fuzzy optimization problem. The proposed method conciliates the advantages of the fuzzy modeling with the advantages of the constrained predictive control, and the degree of freedom is increased in specifying the desired process behavior.

  • PDF

Model predictive control combined with iterative learning control for nonlinear batch processes

  • Lee, Kwang-Soon;Kim, Won-Cheol;Lee, Jay H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.299-302
    • /
    • 1996
  • A control algorithm is proposed for nonlinear multi-input multi-output(MIMO) batch processes by combining quadratic iterative learning control(Q-ILC) with model predictive control(MPC). Both controls are designed based on output feedback and Kalman filter is incorporated for state estimation. Novelty of the proposed algorithm lies in the facts that, unlike feedback-only control, unknown sustained disturbances which are repeated over batches can be completely rejected and asymptotically perfect tracking is possible for zero random disturbance case even with uncertain process model.

  • PDF