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Abstract A control algorithm is proposed for nonlinear multi-input multi-output(MIMO) batch processes by com-
bining quadratic iterative learning contol(Q-ILC) with model predictive control(MPC). Both controls are designed
based on output feedback and Kalman fiter is incorporated for state estimation. Novelty of the proposed algorithm
lies in the facts that, unlike feedback-only control, unknown sustained disturbances which are repeated over batches
can be completely rejected and asymptotically perfect tracking is possible for zero random disturbance case even with

uncertain process model.
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1. Introduction

From the viewpoint of control system design, batch pro-
cesses present a unique challenge seldom found in contin-
uous processes. In a batch process, the control problem is
usually given as a tracking problem for time-varying refer-
ence trajectories defined ovei a finite time interval. Dur-
ing the course of a typical batch, process variables swing
over wide ranges, and as a consequence, nonlinearity of
the process is an important factor to consider in controller
design. In addition, batch processes have a unique distur-
bance pattern. In many batch processes, disturbances are
originated from the initial conditions such as feed quality.
They usually last for a number of batches with the same
magnitudes.

Traditionally, batch process control has relied on feed-
back techniques only just as in continuous process control.
Feedback control is employed not only to reject distur-
bances, but also to find the time-varying input trajectories
that correspond to the assigned ouiput trajectories. How-
ever, feedback control has limitations in finding the input
trajectories for processes with nonlinearity (or model er-
ror) and/or nonminimum-phase dynamics, and as a conse-
quence, results in the same type of control error even for
repeated disturbances. One way to overcome such limi-
tations is to superimpose a feedforward bias signal on the
feedback control signal. The feedforward bias signal should
be chosen to correspond to the output reference trajecto-
ries under the nominal condition. Actually, such a feedfor-
ward signal is also necessary for designing a model-based
controller using linear techniques. This is because the lin-
ear systems theory is applicable only in terms of deviations
from the nominal trajectories.

The input trajectories can be calculated by inverting the
process map if a process mo-el vali¢ over the entire oper-
ating regime is available. However, such a nonlinear map

1s very difficult to construct for industrial processes. This
motivates us to find an alternative to the nonlinear model
inversion approach. One aspect of batch operation often
left unexplored is that it is repetitive. The so-called it-
erative learning control(JL.C)"? makes use of this aspect
and enables us to progressively refine the input trajecto-
ries while perfectly rejecting the disturbances which are
repeated over batches. The exisitng [L.C techniques, how-
ever, shares a definitive flaw that they are very sensitive
to output noise/disturbances and can induce excessive con-
trol actions. These are often unacceptable traits in process
control applications. In addition, they are not well snited
to general nonsquare MIMO processes and cannot resolve
the input constraints in an optimal manner. To overcome
these problems, Lee and Lee® have developed the so-called
Q-ILC (ILC based on a quadratic criterion) algorithms for
time-varying MIMO linear stochatic as well as determin-
istic processes with and without constraints. They have
shown through rigorous proofs that all the above men-
tioned problems can be overcom:: with the proposed Q-
ILC algorithms without sacrificing the desired properties
of ILC.

Based on the above considerations, the objective of the
present study is placed to propose a new paradigm for
model-based control of batch and other transient pro-
cesses, where both precise tracking and disturbance re-
jection are important, through combination of MPC for
rejection of random disturbance and Q-ILC for rejection
of repeated disturbances as well as sequential update of
input trajectories. In the proposed control algorithms, the
stochatic formulations of Q-ILC in ref. (4] is combined with
a QDMC-type algorithm based on the state space model®.
One of the key features of the proposed algorithm is that
the so-called static gain model is used to represent the lin-
earized model of a nonlinear batch process. The model can
represent the time-varying as well as time-invariant linear
dynamic systems as a linear algebraic model, and as a con-
sequence, greatly simplify the mathematical development.
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2. Process Description and Error Dynamic
Model

We consider the following general MIMO nonlinear input-
output model defined over N discrete-time indices, T" =
{1,...N}.

y(t) =N (u(t —1),...,u(1),d(t - 1},...,d(1},x1) + w(t)

| (1)
where u, y, d and x; denote the n,—input, ny—output,
nga—disturbance vectors and initial conditions, respec-
tively: w stands for additive zero-mean random distur-
bance. We assume the nonlinear function N be analytic
i.e., defined and differentiable in a domain where the in-
dependent variables are defined.

Since the assiociated time domain has a finite time indi-
cies, it is possible to represent the process as the following
nonlinear algebraic system. For the k™" batch,

Yx = Yi + Wi = A (Ux, Di, x1,5) + Wi

YT =[y(1) y'(@)...y (V)]
and U,VY,D, and W are defined similarly.

(2)
@)

where

The transition of the disturbance-free output from the &'"

to k + 1°* batch can be represented by the Taylor series
expansion.

Yieir = N(Uikt1, D1, xr641) = Yie + GrAUgq

+ GPADkyi + GEAXI k41 +- - (4)

AUggy = Uggy — Ui (5)

and ADg4; and Axy k41 are defined similarly. Let Yg de-
note the desired output sequence and define

where

Ex = Ya-—VYsi
Ex = Ya—Yi (6)
. Vigr = GEADry1 4+ GEAX k41 + ...

then we obtain a linearized state space model that de-
scribes the transition of tracking error between two suc-
cessive batches.

Ex —~ GxAUkq1 + Vi
Ex + Wi

Exy1 =

E. = (7)

Since zero-mean output disturbance vectors from two dif-
ferent batches can be reasonably assumed to be indepen-
dent nio matter how the disturbance is correlated in a batch

sequence, the covariance of Wy is defined by
cov {WkW;T} =RYo(k — j) (8)

Also we assume Vi can be modelled as an independent

white noise vector with the covarince of
cov {VkV;p} =R"¢(k - ) 9)

The so-called Q-ILC algorithm (stochastic version) has
been derived for the above stochastic model of (7).

Remark 1: Gy will have a lower block triangular struc-
ture due to causality. Time-varying as well as time-
invariant linear processes can be represented by this model
structure. The model of (7) is observable but may not
be reachable due to time delays. Gy is assumed to be
available after each batch by some means, e.g., through
identification.

Remark 2: If higher order expansion is negligible and x;
and D are same over batches, V = 0, which implies they
are perfectly cancelled.

The model for MPC is defined in terms of deviation vari-
ables and represents the dynamics along discrete-time in-
dices. Deviation variables for the k + 1** batch are defined
around the trajectories from the k** batch as follows:

ye+1(t) — yi(t)
uk+1(t) = uk(t)

For the k 4+ 1*" batch, it is straightforwardly derived from
(7) or (2) that the noise-free output is represented by

Yi41(t)

urr(t) = (10)

y(ty=g(t,t —nyu(t —n)+... +g(t,t — ut —1) (11)

where g(%, j) denotes the (i, 5)'* element of G and n is the
number of significant FIR terms. Using the technique in
Lee and Morari(1994), this model can be converted to a
state space form as follows:

x(t+1) = Mx(t)+ S(t)éu(t)
y(t) = Nx(t)+n(t) (12)
where
x(ty = [ y7(t) y(t+n—1) ]
du(t) = u(t)—u(t-1)
[0 I 0 ... 0
0 0I .. o0
M = S
0 0 0 ... I
|6 0 0 ... I
[ g(t+1,t)
glt+2,t)+g(t+2,t+1)
s = |,
L .g(t+n,t)+...+g(t+n,t+n-—1)
N = [10 0] (13)

and n is the output disturnbance composed of v and w. A
standard QDMC can be derived for the above model®.

3. Q-ILC Algorithms

The Q-ILC algorithm (Lee and Lee, 1996) is derived by
solving the following stochastic minimization after each
batch

. 1 = -
min Jipr = S F {Ei41QExsr + AU RAU [Ti }
AUk 2
(14)
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with or without constraints as a way to attain the follow-
ing ILC objective extended to general nonsquare MIMO
systems.

Given the model of form (7), design a learning
algorithm with the property that

E{HE:;H} =mUinE{]|EH} as k — oo (15)

under an appropriate norm definition.

In (14), Zi represents the information available at the end
of the k** batch (e.g., output tracking error during the k*"
batch). When there is no constraints, the problem is linear
quadratic and the separation principle holds. The solution
is easily obtained as a least squares solution combined with
Kalman filtering. When there is constraints, however, the
problem becomes nonlinear and formidable to solve. By
assuming the separation principle, the problem becomes a
standard quadratic programming(QP) and a suboptimal
solution can be obtained.

For both cases, the following Kalman filter is used for op-
timum estimation of Eyx.

Eklk = I:fkuc—x + Ki(Ex — Ek|k——l)

Extie =  Expp — GrAUiqs

Ki = Pi(Pyi+RY)™ (16)
Piyi = Pi—Pi(Pe+RY) 7' Pr+RY

Now the Q-ILC algorithms are summarized as follows. To
explicitly signify the learning control signal, we use the

superscript ©.

Unconstrained Q-ILC Algorithm

AUZ, | =UZ, | — Uy = HiEpy (17)

where  Hi=(GIQGi+R)” ' GfQ  (18)

Constrained Q-ILC Algorithm

Constraints may be imposed on the input, input change
(in terms of time), and the output. As far as the con-
straints are given by linear inequalities, they can always
be reagrranged as follows.

Cip1AUZ,, > Cip (19)

Under the certainty equivalence assumption and from the
Kalman filter equation, the objective (14) can be reduced
to
7 1
min Jiy1 = = {AUL,, (GEQGxk + R) AUy,
AUg4 2

—2AUZ+1GEQEk|k} (20)

The above minimization subject to the constraints in (19)
formulates a standard QP p-chlem.

4. Combination of MPC

The MPC criterion can be written as

min (IR + 100 =Y+ 110l + o), )

(21)
where R(t + 1|t) and V(¢ + 1|t) denote sequences of refer-
ence trajectories and output predictions over the predic-
tion horizon based on Iy, respectively; U™ (¢) stands for
the sequence of future control input changes (with respect
to time) by MPC.

Recall that the learning control signal is added to the
MPC signal through the feedforward path. Therefore,
u = u® + u™ where uM(t) and u®(t) be the MPC and
Q-ILC signals (as deviation variables) at ¢, respectively.
Based on this consideration, optimal prediction Y(t + 1|t)
can be described by for the case that the prediction horizon
1s equal to the control horizon

Y(t +1]t) = MPx(t]t) + SP(¢) (SU™M(t) + 6U° (1)) (22)

where MP is a p x n matrix conmposed of the first
p(prediction horizon) rows of M; SP(t) is a p x p lower
block triangular matrix of which the first column is the
upper p blocks of S(t), the nonzero part of the second
column is the upper p — 1 blocks of S(t 4 1) and so on;
8UC(t) is the sequence of §u? over the prediction horizon.
In the above, x(t|t) can be obtained from the Kalman filter
equation.

x(te)
x(t+ 1|t)

xX(tt — 1) + L(t) (y(t) — N%(t]t — 1))
ME(E|t) + S(t)du(t) (23)

where L(t) is the time-varying Kalman gain.

Remark 3 : Practcally, optimal L(t) is hard to define due
to the lack of exact knowledge of noise characteristics. In
this sense, L(t) is considered a tuning parameter whose
elements may have values from 0 (no feedback correction)
to 1 (full correction) when the process has no integrating
modes.

Now, by substituting (22) into (21), the MPC criterion
is rearranged with respect to SU™(t) and the combined
algorithms are derived as follows.

Unconstrained Algorithm

Obtaining the least squares solution of the quadratic opti-
mization and applying the receeding horizon strategy, we
have

u(t) =u(t—1) +u?(t) + Kuprc(EE+1]t)  (24)

where
Kupc(t) = NP (SPT(OT(1)SP(¢) + A(1)) ' SPTT(t)
E(t+1]8) = R(t + 1]t) — MPx(¢]t) — SP(£)6U (1)

NPo= [T 0 0] (25)

Constrained Algorithm
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Similarly to the constrained Q-ILC algorithm, the con-
strained MPC (combined with Q-ILC) becomes a standard
QP problem. Derivation of the problem formation is quite
straightforward and not shown here.

5. Properties of the Proposed Algorithm

Disturbance Rejection

As discussed in Remark 2, unknown but repeated dis-
turbances are automatically rejected by the learning algo-
rithm. This is the most important benefit we can obtain
from learning control. We mentioned in Introduction
that noise sensitivity a common flaw of existing ILC algo-
rithms. Output noise is amplified indefinitely as sampling
interval decreases to zero and w — co. On the other hand,
the noise gain of Q-ILC is limited by

k||

|(craci+r)™ ciq|

Umaz(Gk)Umaa:(Q)
Umin(Q)

irrespective of sampling interval. In addition, in Q-ILC,
noise effects are filtered by the Kalman filter.

IA

(26)

Convergence

Since the batch process is run over a finite time horizon,
the usual stability concept along time index is not impor-
tant. Instead, stability along the batch index, or equiva-
lently, convergence of Ex should be investigated. In this
paper, we confine our discussion to the unconstrained case
with L7(¢) = [I...1 ] (full feedback correction in MPC)
and RT(t+1)t) = [y5(t+1)...y5(t + p) ] where ya(t)
denotes the deviation variable of yq4(t). In this analysis,
we asume the true system is (7).

Through rather tedius but straightforward manipulations,
we can show from (24) the output sequence over the whole
batch horizon can be represented by

AUky1 = CiExqs +DkaEk|k (27)

If we write the dynamics of the total system with respect
to the state estimate (Exjx—1) and state estimation error
(Ek|k—1) after substituting the above equation into (16),

ék+1|k = (I-Ky) Ek|k-1 + noise term
ék+1[k = (I+chk)_l (I_GkaHk)éklk—l +
(28)

FiEy)x_1 + noise term

Since (7) is completely observable, I — Ki is asymptoti-
cally stable. Without MPC, Cx = 0 and D« = I, and
it has been shown the eigenvalues of reachable modes of
I — GxH; lie strictly inside the unit circle’. With MPC
combined, (I+ GrCi)™' gives an effect to pull the eigen-
values toward the origin at low frequencies (by the inte-
gral action), hence enhances the convergence property. At
high frequencies, I >» GxCx and Di — 1. This implies
MPC has only minor effects at high frequencies. Around

the crossover frequency (in the SISO sense) when MPC is
tightly tuned, it may induce instability by increasing the
eigenvalues. To avoid the potential instability, it is recom-
mended to loosely tune MPC.

Robustness

It has been shown that Q-ILC allows certain amount of
model error without infringing the asymptotic convergence
property?. Allowable model error bound increases with
R. Since loosely tuned MPC provides more stability (con-
vergence) margin at least at low frequencies, we can ex-
pect the combined algorithm can be more robust than
Q-ILC alone. Although the robustness can be enhanced,
MPC may degrade (asymptotically perfect) tracking per-
formance (in the noise-free case). When there is model er-
ror, MPC predicts nonzero control error and tries to com-
pensate it even when perfect learning signal is provided.
It has been shown that in the noise-free case, asymptot-
ically perfect tracking is possible only when the feedback
control is of error-driven type and two-degrees-of-frredom
controller leads to offset in the limit.> With MPC of cur-
rent formulations, this condition is fulfilled if the prediction
horizon is one or there is no model error.

6. Conlusions

An MPC algorithm combined with iterative learning con-
trol (Q-ILC) is presented for nonlinear MIMO batch pro-
cess control. With the aid of Q-ILC, not only the ran-
domly occuring disturbances can be effectively filtered but
also the unknown but repetitive disturbances which are
frequently observed in chemcial batch processes can be
perfectly rejected. At the present formulation, MPC may
degrade the tracking performance when there is model er-
ror. Development of improved algorithm based on detailed
analyses on mathematical properties are being under in-
vestigation.
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