• Title/Summary/Keyword: Nonlinear least square technique

Search Result 38, Processing Time 0.027 seconds

Experimental Vibration Analysis for Viscoelastically Damped Circular Cylindrical Shell Using Nonlinear Least Square Method (비선형 최소제곱법을 이용한 점탄성 감쇠를 갖는 원통셀의 실험진동해석)

  • Min, Cheon-Hong;Park, Han-Il;Bae, Soo-Ryong
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.41-46
    • /
    • 2008
  • It is a recent trend for advanced ships and submarines to incorporate composite structures with viscoelastically damping material. Much research has been done on curve-fitting techniquesto identify vibration characteristic parameters such as natural frequencies, modal damping ratios, and mode shapes of the composite structure. In this study, an advanced technique for accurately determining vibration characteristic of a circular cylindrical shell-attached viscoelastically damping material is used, based on a multi-degree of freedom (MDOF) curve-fitting method. First, an initial value is obtained by using a linear least square method. Next, using the initial value, the exact modal parameters of the composite circular cylindrical shell are obtained by using a nonlinear least square method. Results show computation time is greatly decreased and accurate results are obtained by the MDOF curve-fitting method.

Parameter Identification of Robot Hand Tracking Model Using Optimization (최적화 기법을 이용한 로봇핸드 트래킹 모델의 파라미터 추정)

  • Lee, Jong-Kwang;Lee, Hyo-Jik;Yoon, Kwang-Ho;Park, Byung-Suk;Yoon, Ji-Sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.467-473
    • /
    • 2007
  • In this paper, we present a position-based robot hand tracking scheme where a pan-tilt camera is controlled such that a robot hand is always shown in the center of an image frame. We calculate the rotation angles of a pan-tilt camera by transforming the coordinate systems. In order to identify the model parameters, we applied two optimization techniques: a nonlinear least square optimizer and a particle swarm optimizer. From the simulation results, it is shown that the considered parameter identification problem is characterized by a highly multimodal landscape; thus, a global optimization technique such as a particle swarm optimization could be a promising tool to identify the model parameters of a robot hand tracking system, whereas the nonlinear least square optimizer often failed to find an optimal solution even when the initial candidate solutions were selected close to the true optimum.

Application of dynamic matrix control (Dynamic Matrix Control의 응용)

  • Moon, Il;Eyo, Young-Koo;Song, Hyung-Keun;Park, Won-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.652-657
    • /
    • 1987
  • The Dynamic Matrix Control(DMC) technique was applied to nonlinear and nonminimum phase system. System model was identified by using Least Square method. Desired output trajectory was prespecified and input suppression parameter was also introduced. It was shown that DMC technique worked with great success in solving both nonminimum phase system and nonlinear system.

  • PDF

OLED Power Driving Simulation Using Impedance Spectroscopy

  • Kong, Ung-Gul;Hyun, Seok-Hoon;Yoon, Chul-Oh
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.32-35
    • /
    • 2003
  • Nonlinear parameterization of OLED device from measurements of bias dependence of impedance spectra and parameter extraction using Levenberg-Marquardt complex nonlinear least square regression algorithm based on resistor-capacitor equivalent circuit model enables computer simulation of OLED power driving characteristics in forms of square-wave or sinusoidal output signal at arbitrary conditions. We introduce developed OLED power driving simulation software and discuss transient responses in voltage-or current-controlled operations as well as nonlinear characteristics of OLED, by presenting both the simulation and experimental results. This OLED simulation technique using impedance spectroscopy is extremely useful in predicting performance of the nonlinear device, especially in time-domain analysis of device operation.

  • PDF

The Influence of Assay Error Weight on Gentamicin Pharmacokinetics Using the Bayesian and Nonlinear Least Square Regression Analysis in Appendicitis Patients

  • Jin, Pil-Burm
    • Archives of Pharmacal Research
    • /
    • v.28 no.5
    • /
    • pp.598-603
    • /
    • 2005
  • The purpose of this study was to determine the influence of weight with gentamicin assay error on the Bayesian and nonlinear least squares regression analysis in 12 Korean appen dicitis patients. Gentamicin was administered intravenously over 0.5 h every 8 h. Three specimens were collected at 48 h after the first dose from all patients at the following times, just before regularly scheduled infusion, at 0.5 h and 2 h after the end of 0.5 h infusion. Serum gentamicin levels were analyzed by fluorescence polarization immunoassay technique with TDxFLx. The standard deviation (SD) of the assay over its working range had been determined at the serum gentamicin concentrations of 0, 2, 4, 8, 12, and 16 ${\mu}g$/mL in quadruplicate. The polynominal equation of gentamicin assay error was found to be SD (${\mu}g$/mL) = 0.0246-(0.0495C)+ (0.00203C$^2$). There were differences in the influence of weight with gentamicin assay error on pharmacokinetic parameters of gentamicin using the nonlinear least squares regression analysis but there were no differences on the Bayesian analysis. This polynominal equation can be used to improve the precision of fitting of pharmacokinetic models to optimize the process of model simulation both for population and for individualized pharmacokinetic models. The result would be improved dosage regimens and better, safer care of patients receiving gentamicin.

Nonlinear elements position detecting by error matrix method (오차행렬에 의한 비선형 요소 위치 파악에 관한 연구)

  • 변언섭;이상설;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1104-1111
    • /
    • 1990
  • A method to identify nonlinear elements position of a nonlinear system is presented. Nonlinear elements position can be identified by an equivalent error damping and stiffness matrices which are based on the equivalent linearization technique. The procedures of this technique are: (1) Obtain input force and system response. (2) Define error between the actual and linearized restoring forces. (3) Calculate linearized damping and stiffness coefficients to minimize the square error sum. Several examples are tested and found that these methods are very effective not only to locate the nonlinear elements position but also to identify the degree of nonlinearity qualitatively. Nonlinear type can be qualitatively identified by examining the plots of restoring force vs equivalent state values.

Study On The Element Free Galerkin Method Using Bubble Packing Technique (버블패킹기법을 이용한 무요소 갤러킨법에 관한 연구)

  • Jeong, Sun-Wan;Choe, Yu-Jin;Kim, Seung-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2469-2476
    • /
    • 2000
  • The meshing of the domain has long been the major bottleneck in performing the finite element analysis. Research efforts which are so-called meshfree methods have recently been directed towards eliminating or at least easing the requirement for meshing of the domain. In this paper, a new meshfree method for solving nonlinear boundary value problem, based on the bubble packing technique and Delaunay triangle is proposed. The method can be efficiently implemented to the problems with singularity by using formly distributed nodes.

Weighted Least Square-Based Magnetometer Calibration Method Robust in Roll-Pitch Limited Conditions (롤피치 제한 조건에 강인한 가중 최소자승법 기반 마그네토미터 캘리브레이션 기법)

  • Jeon, Tae-Hyeong;Lee, Jung-Keun
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.259-265
    • /
    • 2017
  • Magnetometer calibration must be performed before the use of three-axis magnetometers to ensure the accuracy of orientation estimation. Recently, one of the most popular calibration approaches is the ellipsoid fitting technique due to its high performance in calibration. To date, in fact, performances of the existing ellipsoid fitting methods have been evaluated with full range rotation data. However, in case of the calibration of magnetometers attached to vehicles, ships, and planes, it is very difficult to collect the full range rotation data since their allowable ranges in terms of roll and pitch are limited to small. This constraint may result in serious performance degradation of some ellipsoid fitting algorithms. Therefore, to be practical, this paper proposes a weighted least square-based magnetometer calibration method that is robust in roll-pitch limited conditions. Furthermore, the proposed method is a linear approach and thus is free from the well-known initial value issue in nonlinear approaches. Experimental results show the superiority of the proposed method to other ellipsoid-fitting calibration methods.

A Study on Practical PMM Test Technique for Ship Maneuverability Using System Identification Method (선박의 조종성능 추정에 있어서 시스템식별법을 이용한 PMM 시험 기법에 대한 연구)

  • 이태일;권순홍
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.6
    • /
    • pp.25-31
    • /
    • 2002
  • A system identification method is introduced to increase the prediction accuracy of a ship's maneuverability in PMM test, analysis. To improve the accuracy of linear hydrodynamic coefficients, the analysis techniques of pure sway and yaw tests are developed, and confirmed. In the analysis of sway tests, accuracy to linear hydrodynamic coefficients depends on the frequency of sway motion. To obtain nonlinear hydrodynamic coefficients for large drift angles, a combined yaw test is introduced. Using this system identification method, runs of PMM test can be reduced while retaining sufficient accuracy, compared to the Fourier integration method. Through the comparisons with sea trial results and the Fourier integration method, the accuracy and efficiency of the newly proposed system identification method, based on least square method, has been validated.