• Title/Summary/Keyword: Nonlinear feature

Search Result 295, Processing Time 0.031 seconds

Application of MS Excel in Teaching Statics (엑셀 프로그램을 활용한 정역학 교육 사례)

  • Kim, Youngheub
    • Transactions of the KSME C: Technology and Education
    • /
    • v.2 no.1
    • /
    • pp.21-28
    • /
    • 2014
  • As one of the most famous spreadsheet programs that is widely applied to a variety of fields in business, MS Excel has also been used for educational purposes due to its feature of wide accessibility, enabling students to use the program through almost any kind of PC that now exists. The program is mainly used for numerical analysis and formulae applications in the fields of science and engineering. This paper shall provide the key to understanding the application of MS Excel to teaching Statics through the illustration of its essential functions for education. Also, the development process of the analysis program using macros and VBA(Visual Basic for Applications) is described for the deeper comprehension of advanced applications. Students were not only able to solve the Statics problems using basic features of MS Excel, but also discovered new systematic methods of approaching complex problems and developed application programs using macros and VBA.

Cable-pulley brace to improve story drift distribution of MRFs with large openings

  • Zahrai, Seyed Mehdi;Mousavi, Seyed Amin
    • Steel and Composite Structures
    • /
    • v.21 no.4
    • /
    • pp.863-882
    • /
    • 2016
  • This study aims to introduce a new bracing system by which even super-wide frames with large openings can be braced. The proposed system, hereafter called Cable-Pulley Brace (CPB), is a tension-only bracing system with a rectilinear configuration. In CPB, a wire rope passes through a rectilinear path around the opening(s) and connects the lower corner of the frame to its opposite upper one. CPB is a secondary load resisting system with a nonlinear-elastic hysteretic behavior due to its initial pre-tension load. As a result, the required energy dissipation would be provided by the MRF itself, and the main intention of using CPB is to contribute to the initial and post-yield stiffness of the whole system. Using a stiffness calibration technique, optimum placement of the CPBs is discussed to yield a uniform displacement demand along the height of the structure. A displacement-based design procedure is proposed by which the MRF with CPB can be designed to achieve a uniform distribution of inter-story drifts with predefined values. Obtained results indicated that CPB leads to significant reductions in maximum and residual deformations of the MRF at the expense of minor increase in the maximum base shear and developed axial force demands in the columns. In the case of a typical 5-story residential building, compared to SMRF system, CPB system reduces maximum amounts of inter-story and residual drifts by 35% and 70%, respectively. Moreover, openings of the frame are not interrupted by the CPB. This is the most appealing feature of the proposed bracing system from architectural point of view.

Contact interface fiber section element: shallow foundation modeling

  • Limkatanyu, Suchart;Kwon, Minho;Prachasaree, Woraphot;Chaiviriyawong, Passagorn
    • Geomechanics and Engineering
    • /
    • v.4 no.3
    • /
    • pp.173-190
    • /
    • 2012
  • With recent growing interests in the Performance-Based Seismic Design and Assessment Methodology, more realistic modeling of a structural system is deemed essential in analyzing, designing, and evaluating both newly constructed and existing buildings under seismic events. Consequently, a shallow foundation element becomes an essential constituent in the implementation of this seismic design and assessment methodology. In this paper, a contact interface fiber section element is presented for use in modeling soil-shallow foundation systems. The assumption of a rigid footing on a Winkler-based soil rests simply on the Euler-Bernoulli's hypothesis on sectional kinematics. Fiber section discretization is employed to represent the contact interface sectional response. The hyperbolic function provides an adequate means of representing the stress-deformation behavior of each soil fiber. The element is simple but efficient in representing salient features of the soil-shallow foundation system (sliding, settling, and rocking). Two experimental results from centrifuge-scale and full-scale cyclic loading tests on shallow foundations are used to illustrate the model characteristics and verify the accuracy of the model. Based on this comprehensive model validation, it is observed that the model performs quite satisfactorily. It resembles reasonably well the experimental results in terms of moment, shear, settlement, and rotation demands. The hysteretic behavior of moment-rotation responses and the rotation-settlement feature are also captured well by the model.

Optimal Design of Local Induction Heating Coils Based on the Sampling-Based Sensitivity (샘플링 기반 민감도를 이용한 국부 유도 가열용 코일의 최적 설계)

  • Choi, Nak-Sun;Kim, Dong-Wook;Kim, Dong-Hun
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.3
    • /
    • pp.110-116
    • /
    • 2013
  • This paper proposes a sampling-based sensitivity method for dealing with electromagnetic coupled design problems effectively. The black-box modeling technique is basically applied to obtain an optimum regardless of how strong the electromagnetic, thermal and structural analyses are coupled with each other. To achieve this, Kriging surrogate models are produced in a hyper-cubic local window with the center of a current design point. Then design sensitivity values are extracted from the differentiation of basis functions which consist of the models. The proposed method falls under a hybrid optimization method which takes advantages of the sampling-based and the sensitivity-based methods. Owing to the aforementioned feature, the method can be applied even to electromagnetic problems of which the material properties are strongly coupled with thermal or structural outputs. To examine the accuracy and validity of the proposed method, a strongly nonlinear mathematical example and a coil design problem for local induction heating are tested.

Simulation of Tsunamis in the East Sea Using Dynamically-Interfaced Multi-Grid Model (동적결합둥지형 모형에 의한 동해안 쓰나미 시뮬레이션)

  • Choi, Byung-Ho;Efim, Pelinovsky;Woo, Seung-Buhm;Lee, Jong-Woong;Mun, Jong-Yoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.41-55
    • /
    • 2003
  • A dynamically-interfaced multi-grid finite difference model for simulation of tsunamis in the East Sea(Choi et al.) was established and further applied to produce detailed feature of coastal inundations along the whole eastern coast of Korea. The computational domain is composed of several sub-regions with different grid sizes connected in parallel of inclined directions with 16 innermost nested models. The innermost sub-region represents the coastal alignment reasonably well and has a grid size of about 30 meters. Numerical simulations have been performed in the framework of shallow-water equations(linear, as well as nonlinear) over the plane or spherical coordinate system, depending on the dimensions of the sub-region. Results of simulations show the general agreements with the observed data of run-up height for both tsunamis. The evolution of the distribution function of tsunami heights is studied numerically and it is shown that it tends to the log-normal curve for long distance from the source.

Comparative Analysis of Synthetic Memristor Emulator and M-R Mutator (합성형 멤리스터 에뮬레이터와 M-R 뮤테이터의 특성 비교)

  • Choi, Hyuncheol;Kim, Hyongsuk
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.98-107
    • /
    • 2016
  • An analytical comparison of a synthetic memristor emulator and a M-R mutator-based memristor emulator has been performed. Memristor is an electrical element with the characteristic of variable resistance. It is called the fourth fundamental electrical element following resistor, capacitor, and inductor. Memristor emulator is a circuit which implements the feature of variable resistance via the composition of various electrical devices. It is an essential circuit to study memristor characteristics during the time before it is commercially available. There are two representative memristor emulators depending upon their implementation methods. One is a memristor emulator which is synthesized via combining various electrical devices and the other one is M-R mutator-based memristor emulator implemented by extracting resistance from a nonlinear device. In this paper, implementation methods of these two memristor emulators are studied and their differences are investigated by analysing their characteristics.

Recommended Practice for o Reasonable Design Demand Factor and Analysis of Power Consumption Characteristics by Loads in Office Buildings (사무소용 빌딩의 부하종별 전력소비특성 분석 및 수용률 기준 정립에 관한 연구)

  • Kim, Se-Dong;Lee, Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.3
    • /
    • pp.111-118
    • /
    • 2005
  • It is increased electrical energy consumption with the development of intelligence society in the once buildings and thus an energy conservation through efficient use of electricity became more important. This paper shows a reasonable design demand factor in office buildings, that was made by the systematic and statistical way considering actual conditions, such as investigated electric equipment capacity, peak power consumption, demand factor, etc., for 54 office buildings and 34 electrical design offices. In this dissertation it is necessary to analyse the key features and general trend from the investigated data. It made an analysis of the feature parameters, such as average, standard deviation, median, maximum, minimum and thus it was carried the linear and nonlinear regression analysis.

Design of Nonlinear Controller for Variable Speed Wind Turbines based on Kalman Filter and Artificial Neural Network (칼만필터 및 인공신경망에 기반한 가변속 풍력발전 시스템을 위한 비선형 제어기 설계)

  • Moon, Dae-Sun;Kim, Sung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.2
    • /
    • pp.243-250
    • /
    • 2010
  • As the wind has become one of the fastest growing renewable energy sources, the key issue of wind energy conversion systems is how to efficiently operate the wind turbines in a wide range of wind speeds. Compared to fixed speed turbines, variable speed wind turbines feature higher energy yields, lower component stress and fewer grid connection power peaks. Generally, measurement of wind speed is required for the control of variable speed wind turbine system. However, wind speed measured by anemometers is not accurate owing to various reasons. In this work, a new control algorithm for variable speed wind turbine system based on Kalman filter which can be used for the estimation of wind speed and artificial neural network which can generate optimum rotor speed is proposed. Also, to verify the feasibility of the proposed scheme, various simulation studies are carried out by using Simulink in Matlab.

Analysis of Quadratically Filtered Gradient Algorithm with Application to Channel Equalization (채널 등화기에 응용한 제2차 필터화 경사도 알고리즘의 해석)

  • 김해정;이두수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.1
    • /
    • pp.131-142
    • /
    • 1994
  • This paper analyzes the properties of such algorithm that corresponds to the nonlinear adaptive algorithm with additional update terns, parameterized by the scalar factors ${\alpha}1,\;and\;{\alpha}2$. The analysis of concergence leads to eigenvalues of the transition matrix for the mean filter coefficient vector. Regions in which the algorithm becomes stable are demonstrated. The time constant is derived and the computational complexity of the QFG algorithm is compared with those of the conventional LMS. sign, and LFG algorithm. The properties of convergence in the mean square error is derived and the neccessary condition for the CFG algorithm to be stable is attaned. In the computer simulation a channel equalization is utilized to demonstrate the performance feature of the QFG algorithm. The QFG algorithm has the more computational complexities but the faster convergence speed than LMS and LFG algorithm. Since the QFG algorithm has smoother convergence, it may be useful in case where error bursting is a problem.

  • PDF

Moving Mass Actuated Reentry Vehicle Control Based on Trajectory Linearization

  • Su, Xiao-Long;Yu, Jian-Qiao;Wang, Ya-Fei;Wang, Lin-lin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.3
    • /
    • pp.247-255
    • /
    • 2013
  • The flight control of re-entry vehicles poses a challenge to conventional gain-scheduled flight controllers due to the widely spread aerodynamic coefficients. In addition, a wide range of uncertainties in disturbances must be accommodated by the control system. This paper presents the design of a roll channel controller for a non-axisymmetric reentry vehicle model using the trajectory linearization control (TLC) method. The dynamic equations of a moving mass system and roll control model are established using the Lagrange method. Nonlinear tracking and decoupling control by trajectory linearization can be viewed as the ideal gain-scheduling controller designed at every point along the flight trajectory. It provides robust stability and performance at all stages of the flight without adjusting controller gains. It is this "plug-and-play" feature that is highly preferred for developing, testing and routine operating of the re-entry vehicles. Although the controller is designed only for nominal aerodynamic coefficients, excellent performance is verified by simulation for wind disturbances and variations from -30% to +30% of the aerodynamic coefficients.