• Title/Summary/Keyword: Nonlinear differential system

Search Result 373, Processing Time 0.026 seconds

Material model for load rate sensitivity

  • Kozar, Ivica;Ibrahimbegovic, Adnan;Rukavina, Tea
    • Coupled systems mechanics
    • /
    • v.7 no.2
    • /
    • pp.141-162
    • /
    • 2018
  • This work presents a novel model for analysis of the loading rate influence onto structure response. The model is based on the principles of nonlinear system dynamics, i.e., consists of a system of nonlinear differential equations. In contrast to classical linearized models, this one comprises mass and loading as integral parts of the model. Application of the Kelvin and the Maxwell material models relates the novel formulation to the existing material formulations. All the analysis is performed on a proprietary computer program based on Wolfram Mathematica. This work can be considered as an extended proof of concept for the application of the nonlinear solid model in material response to dynamic loading.

Optimal Control of Nonlinear Systems Using Block Pulse Functions (블럭펄스 함수를 이용한 비선형 시스템의 최적제어)

  • Jo, Yeong-Ho;An, Du-Su
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.3
    • /
    • pp.111-116
    • /
    • 2000
  • In this paper, we presented a new algebraic iterative algorithm for the optimal control of the nonlinear systems. The algorithm is based on tow steps. The first step transforms optimal control problem into a sequence of linear optimal control problem using the quasilinearization method. In the second step, TPB(two point boundary condition problem) is solved by algebraic equations instead of differential equations using BPF(block pulse functions). The proposed algorithm is simple and efficient in computation for the optimal control of nonlinear systems. In computer simulation, the algorithm was verified through the optimal control design of Van del pole system and Volterra Predatory-prey system.

  • PDF

ASYMPTOTIC SOLUTIONS OF FOURTH ORDER CRITICALLY DAMPED NONLINEAR SYSTEM UNDER SOME SPECIAL CONDITIONS

  • Lee, Keonhee;Shanta, Shewli Shamim
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.3
    • /
    • pp.413-426
    • /
    • 2008
  • An asymptotic solution of a fourth order critically damped nonlinear differential system has been found by means of extended Krylov-Bogoliubov-Mitropolskii (KBM) method. The solutions obtained by this method agree with those obtained by numerical method. The method is illustrated by an example.

  • PDF

AN ABS ALGORITHM FOR SOLVING SINGULAR NONLINEAR SYSTEMS WITH RANK DEFECTS

  • Ge, Rendong;Xia, Zun-Quan
    • Journal of applied mathematics & informatics
    • /
    • v.12 no.1_2
    • /
    • pp.1-20
    • /
    • 2003
  • A modified ABS algorithm for solving a class of singular non-linear systems, $F(x) = 0, $F\;\in \;R^n$, constructed by combining the discreted ABS algorithm and a method of Hoy and Schwetlick (1990), is presented. The second differential operation of F at a point is not required to be calculated directly in this algorithm. Q-quadratic convergence of this algorithm is given.

ON SOME SPECIAL CONDITIONS OF n-TH ORDER NON-OSCILLATORY NONLINEAR SYSTEMS

  • Alam, M.-Shamsul;Hossain, M.B.
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.4
    • /
    • pp.755-765
    • /
    • 2003
  • Krylov-Bogoliubov-Mitropolskii method has been extended to obtain asymptotic solution of n-th order nonlinear differential system characterized by certain non-oscillatory processes. The damping force is considered in such a manner that one of the characteristic roots of the linear system becomes small and others are in integral multiple. The method is illustrated by an example. The solutions for different initial conditions show a good agreement with those obtained by numerical method.

Resonant Loop Design and Performance Test for a Torsional MEMS Accelerometer with Differential Pickoff

  • Sung, Sang-Kyung;Hyun, Chul;Lee, Jang-Gyu
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.1
    • /
    • pp.35-42
    • /
    • 2007
  • This paper presents an INS(Inertial Navigation System) grade, surface micro-machined differential resonant accelerometer(DRXL) manufactured by an epitaxially grown thick poly silicon process. The proposed DRXL system generates a differential digital output upon an applied acceleration, in which frequency transition is measured due to gap dependent electrical stiffness change. To facilitate the resonance dynamics of the electromechanical system, the micromachined DRXL device is packaged by using the wafer level vacuum sealing process. To test the DRXL performance, a nonlinear self-oscillation loop is designed based on the extended describing function technique. The oscillation loop is implemented using discrete electronic elements including precision charge amplifier and hard feedback nonlinearity. The performance test of the DRXL system shows that the sensitivity of the accelerometer is 24 Hz/g and its long term bias stability is about 2 mg($1{\sigma}$) with dynamic range of ${\sigma}70g$.

Design of nonlinear optimal regulators using lower dimensional riemannian geometric models

  • Izawa, Yoshiaki;Hakomori, Kyojiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.628-633
    • /
    • 1994
  • A new Riemannian geometric model for the controlled plant is proposed by imbedding the control vector space in the state space, so as to reduce the dimension of the model. This geometric model is derived by replacing the orthogonal straight coordinate axes on the state space of a linear system with the curvilinear coordinate axes. Therefore the integral manifold of the geometric model becomes homeomorphic to that of fictitious linear system. For the lower dimensional Riemannian geometric model, a nonlinear optimal regulator with a quadratic form performance index which contains the Riemannian metric tensor is designed. Since the integral manifold of the nonlinear regulator is determined to be homeomorphic to that of the linear regulator, it is expected that the basic properties of the linear regulator such as feedback structure, stability and robustness are to be reflected in those of the nonlinear regulator. To apply the above regulator theory to a real nonlinear plant, it is discussed how to distort the curvilinear coordinate axes on which a nonlinear plant behaves as a linear system. Consequently, a partial differential equation with respect to the homeomorphism is derived. Finally, the computational algorithm for the nonlinear optimal regulator is discussed and a numerical example is shown.

  • PDF

Nonlinear interaction analysis of infilled frame-foundation beam-homogeneous soil system

  • Hora, M.S.
    • Coupled systems mechanics
    • /
    • v.3 no.3
    • /
    • pp.267-289
    • /
    • 2014
  • A proper physical modeling of infilled building frame-foundation beam-soil mass interaction system is needed to predict more realistic and accurate structural behavior under static vertical loading. This is achieved via finite element method considering the superstructure, foundation and soil mass as a single integral compatible structural unit. The physical modelling is achieved via use of finite element method, which requires the use of variety of isoparametric elements with different degrees of freedom. The unbounded domain of the soil mass has been discretized with coupled finite-infinite elements to achieve computational economy. The nonlinearity of soil mass plays an important role in the redistribution of forces in the superstructure. The nonlinear behaviour of the soil mass is modeled using hyperbolic model. The incremental-iterative nonlinear solution algorithm has been adopted for carrying out the nonlinear elastic interaction analysis of a two-bay two-storey infilled building frame. The frame and the infill have been considered to behave in linear elastic manner, whereas the subsoil in nonlinear elastic manner. In this paper, the computational methodology adopted for nonlinear soil-structure interaction analysis of infilled frame-foundation-soil system has been presented.

INVESTIGATION OF A NEW COUPLED SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS IN FRAME OF HILFER-HADAMARD

  • Ali Abd Alaziz Najem Al-Sudani;Ibrahem Abdulrasool hammood Al-Nuh
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.2
    • /
    • pp.501-515
    • /
    • 2024
  • The primary focus of this paper is to thoroughly examine and analyze a coupled system by a Hilfer-Hadamard-type fractional differential equation with coupled boundary conditions. To achieve this, we introduce an operator that possesses fixed points corresponding to the solutions of the problem, effectively transforming the given system into an equivalent fixed-point problem. The necessary conditions for the existence and uniqueness of solutions for the system are established using Banach's fixed point theorem and Schaefer's fixed point theorem. An illustrate example is presented to demonstrate the effectiveness of the developed controllability results.