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APPROXIMATE CONTROLLABILITY FOR DIFFERENTIAL

EQUATIONS WITH QUASI-AUTONOMOUS OPERATORS

Jin-Mun Jeong, Eun Young Ju, and Yong Han Kang

Abstract. The approximate controllability for the nonlinear control sys-
tem with nonlinear monotone hemicontinuous and coercive operator is
studied. The existence, uniqueness and a variation of solutions of the

system are also given.

1. Introduction

Let H and V be two real separable Hilbert spaces such that V is a dense
subspace of H. We are interested in the approximate controllability for the
following nonlinear functional control system on H:

(E)


dx(t)

dt
+Ax(t) ∋ (Bu)(t), 0 < t ≤ T,

x(0) = x0.

Assume that A is a monotone hemicontinuous operator from V to V ∗ and
satisfies the coercive condition. Here V ∗ stands for the dual space of V . Let U
be a Banach space and the controller operator B be a bounded linear operator
from the Banach space L2(0, T ;U) to L2(0, T ;H). If Bu ∈ L2(0, T ;V ∗), it is
well known as the quasi-autonomous differential equation (see Theorem 2.6 of
Chapter III in Barbu [5]). In [5], the existence and the norm estimate of a
solution of the above equation on L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) was given, and
results similar to this case were obtained by many authors (see bibliographical
notes of [5, 6, 7, 10, 11]), which is also applicable to optimal control problem.

The optimal control problems for a class of systems governed by a class of
nonlinear evolution equations with nonlinear operator A have been studied in
references by Ahmed, Teo and Xiang [1, 2, 3]. The condition equivalent to the
approximate controllability for semilinear control system have been obtained
in by Naito [9] and Zhou [11]. As for the semilinear control system with the
linear operator A generated C0-semigroup, Naito [9] proved the approximate
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controllability under the range conditions of the controller B. The papers
treating the controllability for systems with nonlinear principal operator A are
not many.

In the present article, we will prove the approximately controllable for (E)
under a rather applicable assumption on the range of the control operator
B, namely that {y : y(t) = Bu(t), u ∈ L2(0, T ;U)} is dense subspace of
L2(0, T,H), which is reasonable and widely used in case of the nonlinear system
(refer to [11, 9, 8]).

2. Quasi-autonomous differential equations

If H is identified with its dual space we may write V ⊂ H ⊂ V ∗ densely and
the corresponding injections are continuous. The norm on V , H and V ∗ will be
denoted by || · ||, | · | and || · ||∗, respectively. Thus, in terms of the intermediate
theory we may assume that

(V, V ∗) 1
2 ,2

= H,

where (V, V ∗) 1
2 ,2

denotes the real interpolation space between V and V ∗. The

duality pairing between the element v1 of V
∗ and the element v2 of V is denoted

by (v1, v2), which is the ordinary inner product in H if v1, v2 ∈ H. For the
sake of simplicity, we may consider

||u||∗ ≤ |u| ≤ ||u||, u ∈ V.

We note that a nonlinear operator A is said to be hemicontinuous on V if

w- lim
t→0

A(x+ ty) = Ax

for every x, y ∈ V where “w- lim” indicates the weak convergence on V .
Let A : V −→ V ∗ be given as a monotone operator and hemicontinuous

from V to V ∗ such that

(F)


A(0) = 0,

(Au−Av, u− v) ≥ ω1||u− v||2 − ω2|u− v|2,
||Au||∗ ≤ ω3(||u||+ 1)

for every u, v ∈ V , where ω2 is a real number and ω1, ω3 are some positive
constants.

Here, we note that if 0 ̸= A(0) we need the following assumption

(Au, u) ≥ ω1||u||2 − ω2|u|2

for every u ∈ V . It is also known that A is maximal monotone and R(A) = V ∗,
where R(A) denotes the range of A.

Let h ∈ L2(0, T ;V ∗) and x be the solution of the following quasi-autonomous
differential equation with B = I:

(1)

{
dx(t)
dt +Ax(t) ∋ h(t), 0 < t ≤ T,

x(0) = x0,
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where A is given satisfying the hypotheses mentioned above. The following
result is from Theorem 2.6 of Chapter III in [5].

Proposition 2.1. Let x0 ∈ H and h ∈ L2(0, T ;V ∗). Then there exists a
unique solution x of (2.1) belonging to

C([0, T ];H) ∩ L2(0, T ;H) ∩W 1,2(0, T ;V ∗)

and satisfying

|x(t)|2 +
∫ t

0

||x(s)||2ds ≤ C1(|x0|2 +
∫ t

0

||h(s)||2∗ds+ 1),(2) ∫ t

0

||dx(s)
ds

||2∗dt ≤ C1(|x0|2 +
∫ t

0

||h(s)||2∗ds+ 1),(3)

where C1 is a constant.

Lemma 2.2. Let xh and xk be the solutions of (1) corresponding to h and k
in L2(0, T ;V ∗). Then we have that

1

2
|xh(t)− xk(t)|2 + ω1

∫ t

0

||xh(s)− xk(s)||2ds(4)

≤
∫ t

0

e2ω2(t−s)||xh(s)− xk(s)|| ||h(s)− k(s)||∗ds,

and

1

2
|xh(t)|2 + ω1

∫ t

0

||xh(s)||2ds(5)

≤ e2ω2t

2
|x0|2 +

∫ t

0

e2ω2(t−s)||xh(s)|| ||h(s)||∗ds.

Proof. In order to prove (5), taking scalar product on both sides of (1) by x(t),

1

2

d

dt
|xh(t)|2 + ω1||xh(t)||2 ≤ ω2|xh(t)|2 + ||xh(t)|| ||h(t)||∗.

Integrating on [0, t], we get

1

2
|xh(t)|2 + ω1

∫ t

0

||xh(s)||2ds(6)

≤ 1

2
|x0|2 + ω2

∫ t

0

|xh(s)|2ds+
∫ t

0

||xh(s)|| ||h(s)||∗ds.

From (6) it follows that

d

dt
{e−2ω2t

∫ t

0

|xh(s)|2ds} = 2e−2ω2t{1
2
|xh(t)|2 − ω2

∫ t

0

|xh(s)|2ds}(7)

≤ 2e−2ω2t{1
2
|x0|2 +

∫ t

0

||xh(s)|| ||h(s)||∗ds}.
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Integrating (7) over (0, t) we have

e−2ω2t

∫ t

0

|xh(s)|2ds

≤ 2

∫ t

0

e−2ω2τ

∫ τ

0

||xh(s)|| ||h(s)||∗dsdτ +
1− e−2ω2t

2ω2
|x0|2

= 2

∫ t

0

∫ t

s

e−2ω2τdτ ||xh(s)|| ||h(s)||∗ds+
1− e−2ω2t

2ω2
|x0|2

= 2

∫ t

0

e−2ω2s − e−2ω2t

2ω2
||xh(s)|| ||h(s)||∗ds+

1− e−2ω2t

2ω2
|x0|2

=
1

ω2

∫ t

0

(e−2ω2s − e−2ω2t)||xh(s)|| ||h(s)||∗ds+
1− e−2ω2t

2ω2
|x0|2,

and hence,

(8) ω2

∫ t

0

|xh(s)|2ds ≤
∫ t

0

(e2ω2(t−s) − 1)||xh(s)|| ||h(s)||∗ds+
e2ω2t − 1

2
|x0|2.

Combining (6) with (8) it follows that

1

2
|xh(t)|2 + ω1

∫ t

0

||xh(s)||2ds ≤
e2ω2t

2
|x0|2 +

∫ t

0

e2ω2(t−s)||xh(s)|| ||h(s)||∗ds.

We also obtain (4) by the similar argument in the proof of (5). □
Theorem 2.3. If (x0, h) ∈ H×L2(0, T ;V ∗), then x ∈ L2(0, T ;V )∩C([0, T ];H)
and the mapping

H × L2(0, T ;V ∗) ∋ (x0, h) 7→ x ∈ L2(0, T ;V ) ∩ C([0, T ];H)

is continuous.

Proof. By virtue of Proposition 2.1 for any (x0, h) ∈ H × L2(0, T ;V ∗), the
solution x of (1) belongs to L2(0, T ;V ) ∩ C([0, T ];H). Let (x0i, hi) ∈ H ×
L2(0, T ;V ∗) and xi be the solution of (1) with (x0i, hi) instead of (x0, h) for
i = 1, 2. Multiplying on (1) by x1(t)− x2(t), we have

1

2

d

dt
|x1(t)− x2(t)|2 + ω1||x1(t)− x2(t)||2

≤ ω2|x1(t)− x2(t)|2 + ||x1(t)− x2(t)|| ||h1(t)− h2(t)||∗.
By the similar process of the proof of (5) it holds

1

2
|x1(t)− x2(t)|2 + ω1

∫ t

0

||x1(s)− x2(s)||2ds

≤ e2ω2t

2
|x01 − x02|2 +

∫ t

0

e2ω2(t−s)||x1(s)− x2(s)|| ||h1(s)− h2(s)||∗ds.

We can choose a constant c > 0 such that

ω1 − e2ω2T
c

2
> 0



APPROXIMATE CONTROLLABILITY 5

and, hence ∫ T

0

e2ω2(t−s)||x1(s)− x2(s)|| ||h1(s)− h2(s)||∗ds

≤ e2ω2T

∫ T

0

{ c
2
||x1(s)− x2(s)||2 +

1

2c
||h1(s)− h2(s)||2∗}ds.

Thus, there exists a constant C > 0 such that

(9) ||x1 − x2||L2(0,T,V )∩C([0,T ];H) ≤ C(|x01 − x02|+ ||h1 − h2||L2(0,T ;V ∗)).

Suppose (x0n, hn) → (x0, h) in H × L2(0, T ;V ∗), and let xn and x be the
solutions (E) with (x0n, hn) and (x0, h), respectively. Then, by virtue of (9),
we see that xn → x in L2(0, T, V ) ∩ C([0, T ];H). □

3. Approximate controllability

In what follows we assume that the embedding V ⊂ H is compact. Let
xh be the solution of (1) corresponding to h in L2(0, T ;V ∗). We define the
solution mapping S from L2(0, T ;V ∗) to L2(0, T ;V ) by

(Sh)(t) = xh(t), h ∈ L2(0, T ;V ∗).

Let A be the Nemitsky operator corresponding to the map A, which is defined
by A(x)(·) = Ax(·). Then

xh(t) =

∫ t

0

((I −AS)h)(s)ds,

and with the aid of Proposition 2.1

||Sh||L2(0,T ;V )∩W 1,2(0,T ;V ∗) = ||xh||L2(0,T ;V )∩W 1,2(0,T ;V ∗)(10)

≤ C1(|x0|+ ||h||L2(0,T ;V ∗) + 1).

Hence if h is bounded in L2(0, T ;V ∗), then so is xh in L2(0, T ;V )∩W 1,2(0, T ;
V ∗). Since V is compactly embedded in H by assumption, the embedding
L2(0, T ;V ) ∩ W 1,2(0, T ;V ∗) ⊂ L2(0, T ;H) is compact in view of Theorem
2 of Aubin [4]. Hence, since the embedding L2(0, T ;H) ⊂ L2(0, T ;V ∗) is
continuous, the mapping h 7→ Sh = xh is compact from L2(0, T ;V ∗) to itself.

The solution of (E) is denoted by x(T ;u) associated with the control u at
time T . The system (E) is said to be approximately controllable at time T if
Cl{x(T ;u) : u ∈ L2(0, T ;U)} = H, where Cl denotes the closure in H.

We assume

(B) Cl{y : y(t) = (Bu)(t), a.e. u ∈ L2(0, T ;U)} = L2(0, T ;H),

where Cl denotes also the closure in L2(0, T ;H).

The main results of this paper is the following:
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Theorem 3.1. Let the assumption (B) be satisfied. If our constants condition
in (F) contains the following inequality: ω3 < ω1, then

(11) Cl{(I −AS)h : h ∈ L2(0, T ;V ∗)} = L2(0, T ;V ∗).

Therefore, the nonlinear differential control system (E) is approximately con-
trollable at time T .

Proof. Let us fix T0 > 0 so that

N = ω−1
1 ω3e

ω2T0 < 1.(12)

Let z ∈ L2(0, T0;V
∗) and r be a constant such that

z ∈ Ur = {x ∈ L2(0, T0;V
∗) : ||x||L2(0,T0;V ∗) < r}.

Take a constant d > 0 such that

(r + ω3 + ω3ω
−1/2
1 eω2T0 |x0|)(1−N)−1 < d.(13)

(5) in Lemma 2.2 implies

ω1||xh||2L2(0,T0;V ) ≤
e2ω2T0

2
|x0|2 +

ω1

2
||xh||2L2(0,T0;V ) +

e2ω2T0

2ω1
||h||2L2(0,T0;V ∗),

that is,

||Sh||L2(0,T0;V ) = ||xh||L2(0,T0;V )(14)

≤ eω2T0(ω
−1/2
1 |x0|+ ω−1

1 ||h||L2(0,T0;V ∗)).

Let us consider the equation

z = (I − λAS)h, 0 ≤ λ ≤ 1.(15)

Let h be the solution of (14). Then, for the element z ∈ Ur, from (13) and
(14), it follows that

||h||L2(0,T0;V ∗) ≤ ||z||+ ||ASh|| ≤ r + ω3(||Sh||+ 1)

≤ r + ω3{eω2T0(ω
−1/2
1 |x0|+ ω−1

1 ||h||L2(0,T0;V ∗)) + 1},

and hence

||h|| ≤ (r + ω3 + ω
−1/2
1 ω3e

ω2T0 |x0|)(1−N)−1

< d

it follows that h /∈ ∂Ud, where ∂Ud stands for the boundary of Ud. Thus the
homotopy property of topological degree theory there exists h ∈ Ud such that
the equation

z = (I −AS)h

holds. Since the assumption (B), there exists a sequence {un} ∈ L2(0, T0;U)
such that Bun 7→ h in L2(0, T0;V

∗). Then by Theorem 2.3 we have that
x(·;un) 7→ xh in L2(0, T0;V ) ∩ C([0, T0];H). Let y ∈ H. We can choose
g ∈ W 1,2(0, T0;V

∗) such that g(0) = x0 and g(T0) = y and from the equation
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(15) there is h ∈ L2(0, T0;V
∗) such that g′ = (I − AS)h. By the assumption

(B) there exists u ∈ L2(0, T0;U) such that

||h−Bu||L2(0,T0;V ∗) ≤
√
2ω1

eω2T0
ϵ

for every ϵ > 0. From (4)

1

2
|xh(t)− xBu(t)|2 + ω1

∫ t

0

||xh(s)− xBu(s)||2ds

≤
∫ t

0

e2ω2(t−s)||xh(s)− xBu(s)|| ||h(s)− (Bu)(s)||∗ds

≤ ω1

∫ t

0

||xh(s)− xBu(s)||2ds+
e2ω2t

4ω1

∫ t

0

||h(s)− (Bu)(s)||2ds,

it holds

||xh − xBu||C([0,T0];H) ≤
eω2T0

√
2ω1

||h−Bu||L2(0,T0;V ∗),

thus, we have

|y − xh(T )| = |
∫ T0

0

((I −AS)h)(s)ds−
∫ T0

0

((I −AS)Bu)(s)ds|

≤ eω2T0

√
2ω1

||h−Bu||L2(0,T0;V ∗) ≤ ϵ.

Therefore, the system (E) is approximately controllable at time T0. Since the
condition (12) is independent of initial values, we can solve the equation in
[T0, 2T0] with the initial value x(T0). By repeating this process, the approx-
imate controllability for (E) can be extended the interval [0, nT0] for natural
number n, i.e., for the initial x(nT0) in the interval [nT0, (n+ 1)T0]. □
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