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APPROXIMATE CONTROLLABILITY FOR DIFFERENTIAL
EQUATIONS WITH QUASI-AUTONOMOUS OPERATORS

JIN-MuN JEONG, EUN YOUNG JU, AND YONG HAN KANG

ABSTRACT. The approximate controllability for the nonlinear control sys-
tem with nonlinear monotone hemicontinuous and coercive operator is
studied. The existence, uniqueness and a variation of solutions of the
system are also given.

1. Introduction

Let H and V be two real separable Hilbert spaces such that V is a dense
subspace of H. We are interested in the approximate controllability for the
following nonlinear functional control system on H:

) dzit) + Az(t) > (Bu)(t), 0<t<T,

x(0) = xo.

Assume that A is a monotone hemicontinuous operator from V to V* and
satisfies the coercive condition. Here V* stands for the dual space of V. Let U
be a Banach space and the controller operator B be a bounded linear operator
from the Banach space L2(0,T;U) to L?*(0,T; H). If Bu € L?(0,T;V*), it is
well known as the quasi-autonomous differential equation (see Theorem 2.6 of
Chapter IIT in Barbu [5]). In [5], the existence and the norm estimate of a
solution of the above equation on L2(0,7;V) N WY2(0,T;V*) was given, and
results similar to this case were obtained by many authors (see bibliographical
notes of [5, 6, 7, 10, 11]), which is also applicable to optimal control problem.

The optimal control problems for a class of systems governed by a class of
nonlinear evolution equations with nonlinear operator A have been studied in
references by Ahmed, Teo and Xiang [1, 2, 3]. The condition equivalent to the
approximate controllability for semilinear control system have been obtained
in by Naito [9] and Zhou [11]. As for the semilinear control system with the
linear operator A generated Cp-semigroup, Naito [9] proved the approximate

Received February 3, 2009; Revised October 30, 2009.

2010 Mathematics Subject Classification. Primary 35B37, 35F25, 93C20.

Key words and phrases. approximate controllability, regularity, reachable set, compact
embedding, degree theory.

(©2011 The Korean Mathematical Society



2 JIN-MUN JEONG, EUN YOUNG JU, AND YONG HAN KANG

controllability under the range conditions of the controller B. The papers
treating the controllability for systems with nonlinear principal operator A are
not many.

In the present article, we will prove the approximately controllable for (E)
under a rather applicable assumption on the range of the control operator
B, namely that {y : y(t) = Bu(t), u € L?(0,T;U)} is dense subspace of
L?(0,T, H), which is reasonable and widely used in case of the nonlinear system
(refer to [11, 9, 8]).

2. Quasi-autonomous differential equations

If H is identified with its dual space we may write V. C H C V* densely and
the corresponding injections are continuous. The norm on V', H and V* will be
denoted by || ||, | - | and || - ||+, respectively. Thus, in terms of the intermediate
theory we may assume that

(‘/v V*)%,Z = H7

where (V,V*) 12 denotes the real interpolation space between V and V*. The
duality pairing between the element v; of V* and the element v, of V' is denoted
by (v1,v2), which is the ordinary inner product in H if v1,v2 € H. For the
sake of simplicity, we may consider

lulls < ful <[lull, weV.
We note that a nonlinear operator A is said to be hemicontinuous on V if
-lim A ty) = A
w- lim (x +ty) x
for every z, y € V where “w-lim” indicates the weak convergence on V.
Let A: V — V* be given as a monotone operator and hemicontinuous

from V to V* such that

A(0) =0,
(F) (Au — Av,u —v) > wi|u —vl]|* — walu — v|?,

| Aull+ < ws([Jul| +1)

for every u,v € V, where ws is a real number and w;, ws are some positive
constants.
Here, we note that if 0 # A(0) we need the following assumption

(Au,u) > wiful]* — wolul®
for every u € V. It is also known that A is maximal monotone and R(A) = V*,
where R(A) denotes the range of A.

Let h € L2(0,T;V*) and x be the solution of the following quasi-autonomous
differential equation with B = I:

{ (D) L Ax(t) 3 h(t), 0<t<T,

M 2(0) = o,
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where A is given satisfying the hypotheses mentioned above. The following
result is from Theorem 2.6 of Chapter III in [5].

Proposition 2.1. Let zg € H and h € L?(0,T;V*). Then there exists a
unique solution x of (2.1) belonging to

C([0,T); H) N L*(0,T; H) nWH2(0,T;V*)
and satisfying

2) ()] + / (s)][2ds < Cu(|rol? + / (s)[2ds + 1),

b da(s) ¢

3) / 1= 112dt < Cu(aof? +/ I|h(s)]|2ds + 1),
0 S 0

where Cy is a constant.

Lemma 2.2. Let x, and xy, be the solutions of (1) corresponding to h and k
in L?(0,T;V*). Then we have that

() 310 =20 +en [ llzn(e) = au(o)]Pds
< [ =0 an) — a9 - ko).

and

(5) SO+ [ Jlon(s)|Pds

engt

t
< |zo|? + / 22|z ()] ||R(s)| | ds.

Proof. In order to prove (5), taking scalar product on both sides of (1) by «(¢),

1d
5%Ixh(t)|2 +wr|zn()]|? < walza(®)® + [lzn (@) |2«
Integrating on [0, t], we get
1 t
(6) IO+ [ Jlon(s) s

1 t t
< Lao + / ja(s)|2ds + / ()] 1) s
0 0

From (6) it follows that

1) e [Py = 27 Gl )F —n [ fen()Pds)

oty '
< 2¢72 Qt{§|x0|2+/0 zn ()] [[2(s)[|+ds}.
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Integrating (7) over (0,t) we have
t
672‘”2'5/ |z (s)|?ds
0
g —¢€ 2
<2 TRt h dsd e
[ e [ dsdr + =5

—2// ¢=227 drlan(5)] V() odls + — MW
o—2w2s _ p—2wat o—2wat
=2 [ s dS+T|$0|2
= L[ s oty ()] (9 s 4 S a2,
w2 Jo 2wo

and hence,

t t _
) wa [ fon(s)Pds < [ (€07 = 1)lon )] [IA(5) s + 5 [aof?.
0 0

Combining (6) with (8) it follows that
20.)2t

t t
SR+ [ llan(o)|Pds < Sofaol? + [ 200 lan ()] ()]s
We also obtain (4) by the similar argument in the proof of (5). O
Theorem 2.3. If (x,h) € HxL?*(0,T;V*), thenz € L*(0,T;V)NC([0,T]); H)
and the mapping
H x L*(0,T;V*) 3 (w0, h) = 2 € L*(0,T; V)N C([0, T); H)
18 CONtINUOUS.

Proof. By virtue of Proposition 2.1 for any (xg,h) € H x L?(0,T;V*), the
solution z of (1) belongs to L2(0,7;V) N C([0,T); H). Let (zo;,hi) € H x
L?(0,T;V*) and z; be the solution of (1) with (zg;, h;) instead of (xq,h) for
i =1, 2. Multiplying on (1) by z1(t) — z2(t), we have

5 |71 (t) — 22D + wiloa () — 2a2(8)]

< walz1(t) = 22 + [|21.(8) — 22(&)]][[ha (t) — 2 (t)]]
By the similar process of the proof of (5) it holds

1 t
Zlz1(t) — 22 (1)) + wy / |21 (s) — 22(s)[|*ds
0
e?nt 2 b ot
< S o —anaf? [ () = ()] () — o).
0
We can choose a constant ¢ > 0 such that

C
w1 — 62w2T§ >0
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and, hence

T
/ 20792y (5) — 2o (8)]] [ (5) — ha(s)]].ds

0
T ¢ 1
< 62“2T/ {5llz1(s) = 22(s)[* + [ (s) — ha(s)l[Z}ds.
0 c
Thus, there exists a constant C' > 0 such that

9) |z — z2ll 20,7 v)nc o) < Cllmor — moz2| + ||y — hal|L20,1v+))-

Suppose (Zon, hn) — (zo,h) in H x L2(0,T;V*), and let z,, and = be the
solutions (E) with (zon, hn) and (zg, h), respectively. Then, by virtue of (9),
we see that x,, — z in L2(0,T,V) N C([0,T]; H). O

3. Approximate controllability

In what follows we assume that the embedding V' C H is compact. Let
xp, be the solution of (1) corresponding to h in L?(0,T;V*). We define the
solution mapping S from L2(0,T;V*) to L%(0,T;V) by

(Sh)(t) = xn(t), he L*0,T;V*).

Let A be the Nemitsky operator corresponding to the map A, which is defined
by A(z)(-) = Az(-). Then

t
onlt) = [ (= S

0

and with the aid of Proposition 2.1

(10) I1Shll L2 0.msvynwr20v=) = [l2nll20.05v)wr 20,150 %)
< Cillwol + 1Al L20,15v+) + 1)

Hence if h is bounded in L?(0,T; V*), then so is z;, in L*(0,T; V)N W12(0, T;
V*). Since V is compactly embedded in H by assumption, the embedding
L2(0,T;V) n WH2(0,T;V*) C L?(0,T;H) is compact in view of Theorem
2 of Aubin [4]. Hence, since the embedding L?(0,T;H) C L?(0,T;V*) is
continuous, the mapping h ++ Sh = x;, is compact from L2(0,T;V*) to itself.
The solution of (E) is denoted by z(7T';u) associated with the control u at
time 7. The system (E) is said to be approzimately controllable at time T if
Cl{x(T;u) : u € L*(0,T;U)} = H, where Cl denotes the closure in H.

We assume
(B) Cly:yt) = (Bu)(®), ae weIX0,T;0)} = IX(0,T; H),
where Cl denotes also the closure in L?(0,T; H).

The main results of this paper is the following:
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Theorem 3.1. Let the assumption (B) be satisfied. If our constants condition
in (F) contains the following inequality: ws < wy, then

(11) CUH{(I —AS)h:h € L*(0,T;V*)} = L*(0,T; V*).

Therefore, the nonlinear differential control system (E) is approzimately con-
trollable at time T'.

Proof. Let us fix Ty > 0 so that
(12) N = witwge?To < 1.
Let z € L?(0,Tp; V*) and r be a constant such that
2z €U, ={x € L*(0,Tp; V*) : 2] L2 (0,705v+) < T}
Take a constant d > 0 such that
(13) (r + ws + wywy 220 zo|)(1 = N) ! < d.

(5) in Lemma 2.2 implies
2w2To 2w2To
e w1 e
w1||xh||%2(0,T0;V) < 9 |9CO|2 + ?Hxhniz(o,To;v) + 2e0r ||h||%2(O,Tg;V*)7

that is,
(14) ISRl L20/10:v) = okl L2(0,70v)
< e (wp o] + w20 zv)):
Let us consider the equation
(15) z=(I—=XAS)h, 0<A<1.
Let h be the solution of (14). Then, for the element z € U,, from (13) and
(14), it follows that
Al 0.moiv =) < [l + ||ASA]| <7+ ws([[Sh]| + 1)
<ot ws{e ™ @ Pl + i HIhllzzmv) + 13,
and hence
[1BI] < (7 ws + i Zuge g ) (1 = N) !
<d
it follows that h ¢ OU,, where OU, stands for the boundary of Uy. Thus the

homotopy property of topological degree theory there exists h € Uy such that
the equation

z=(I—AS)h
holds. Since the assumption (B), there exists a sequence {u,} € L?(0,Ty;U)
such that Bu, +~ h in L?(0,Tp;V*). Then by Theorem 2.3 we have that
x(up) = xp in L2(0,T;V) N C([0,To]; H). Let y € H. We can choose
g € W12(0,Ty; V*) such that g(0) = x¢ and g(Tp) = y and from the equation
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(15) there is h € L?(0,Tp; V*) such that ¢’ = (I — AS)h. By the assumption
(B) there exists u € L?(0,To; U) such that

\/iwl

[h — Bul|2(0,15:v+) < P

for every € > 0. From (4)
1 t
slen(t) = zBu(B)]” +wr / llzn(s) = pu(s)l|*ds
0
¢
< /0 22|z (s) — zpu(s)|[[|h(s) — (Bu)(s)||+ds

< [ llente) = zpuo)Pds+ T [ 1IhGs) = (Bu) s,

it holds
6LUQT0
||xh - xBu”C([O,To];H) < \/ﬂ”h - Bu||L2(O,Tg;V*)7

thus, we have

To To
ly— 2n(T)] = | / (T — AS)h)(s)ds — / (I — AS)Bu)(s)ds|

ew2To

\/2(,«)1

Therefore, the system (E) is approximately controllable at time Tp. Since the
condition (12) is independent of initial values, we can solve the equation in
[To, 2Tp) with the initial value x(T). By repeating this process, the approx-
imate controllability for (E) can be extended the interval [0,nTp] for natural
number n, i.e., for the initial (nTp) in the interval [nTp, (n + 1)Tp). O

|| — Bul|2(0,1;v+) < €
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