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ASYMPTOTIC SOLUTIONS OF FOURTH ORDER
CRITICALLY DAMPED NONLINEAR SYSTEM UNDER

SOME SPECIAL CONDITIONS

Keonhee Lee* and Shewli Shamim Shanta**

Abstract. An asymptotic solution of a fourth order critically damped
nonlinear differential system has been found by means of extended
Krylov-Bogoliubov-Mitropolskii (KBM) method. The solutions ob-
tained by this method agree with those obtained by numerical
method. The method is illustrated by an example.

1. Introduction

An important approach to study nonlinear oscillatory systems is the
small parameter expansion in which the perturbation theory is based.
Perturbation theory comprises mathematical methods that are used to
find an approximate solution to a problem. One widely used method in
this theory is the averaging asymptotic method of Krylov-Bogoliubov-
Mitropolskii (KBM) [2, 3]. Originally, the method was developed for ob-
taining periodic solutions of second order nonlinear systems with small
nonlinearities. Actually, Mitropolskii was proposed a new perturbation
method for investigating systems of differential equations with small per-
turbation term. After that Krylov and Bogoliubov agree the method of
Mitropolskii but they add some conditions as the functions of the sys-
tem will be continuous. So the method is called by Krylov-Bogoliubov-
Mitropolskii method, that means KBM method. Asymptotic methods of
non-linear mechanics developed by Krylov, Bogoliubov and Mitropolskii
known as the KBM method [2] is a powerful tool for the investigation
of nonlinear vibrations. Also later, the method has been extended by
Popov [6] to damped oscillatory nonlinear systems. Owing to physical
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importance of this method, Mendelson [4] rediscovered the Popov’s re-
sults. Murty et al. [5] also extended the KBM method for obtaining
second and fourth order over-damped nonlinear systems. Sattar [7] has
extended the KBM method for second order critically damped nonlinear
systems. Shamsul [11] presented a new asymptotic technique for second
order over-damped and critically damped nonlinear systems. In article
[10], Shamsul has generalized the KBM asymptotic method. Shamsul
and Sattar [8] have presented an asymptotic method for third order
critically damped nonlinear equations. Shamsul [13] again found an as-
ymptotic solution for a third order critically damped nonlinear system.
In the present article, a fourth order critically damped nonlinear sys-
tem is considered and desired solutions are found under some special
conditions.

2. The method

Consider a fourth order weakly nonlinear system governed by the
ordinary differential equation

x(4) + k1
...
x + k2ẍ + k3ẋ + k4x = −εf(x, ẋ, ẍ,

...
x )(2.1)

where x(4) denote the fourth derivative of x , over dots are used for first,
second and third derivatives with respect to t, k1, k2, k3, k4 are constants,
ε is the small parameter and f is the given nonlinear function. Here
−λ1,−λ2,−λ3 and −λ4 are the real negative eigen values when ε = 0
and two of the eigen values say λ3 and λ4 are equal. In this case the
solution of the linear equation of (2.1) is

X(t, 0) = a1,0e
−λ1t + a2,0e

−λ2t + (a3,0 + a4,0t)e−λ3t(2.2)

where aj,0, j = 1, 2, 3, 4 are constants of integration.
When ε 6= 0 following [2, 3] a solution of the equation (2.1) is sought

in the form
X(t, ε) = a1(t)e−λ1t + a2(t)e−λ2t + (a3(t) + ta4(t))e−λ3t

+ εu1(a1, a2, a3, a4, t) + K
(2.3)

where each aj , j = 1, 2, 3, 4 each satisfy the first order differential equa-
tion

ȧj = εAj(a1, a2, a3, a4, t) + K(2.4)

Confining only a first few terms 1, 2, 3, ..., m in the series expansion of
(2.3) and (2.4), we evaluate the functions uj , Aj , j = 1, 2, 3,K, m such
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that aj(t), j = 1, 2, 3,K,m, appearing in (2.3) and (2.4) satisfy the given
differential equation (2.1) with an accuracy of order ε(m+1). In order to
determine these unknown functions it is customary in KBM method that
the correction terms, uj must exclude terms (known as secular terms)
which make them large. Theoretically, the solution can be obtained up
to the accuracy of any order of approximation. However, owing to the
rapidly growing algebraic complexity for the derivation of the formulae,
the solution is in general confined to a lower order.

Now differentiating the equation (2.3) four times with respect t, sub-
stituting the value of x and the derivatives ẋ, ẍ,

...
x , x(4) in the original

equation (2.1), utilizing the relation presented in (2.4) and finally equat-
ing the coefficients of ε , we obtain

e−λ1t(
∂

∂t
− λ1 + λ2)(

∂

∂t
− λ1 + λ3)

2

A1

+ e−λ2t(
∂

∂t
− λ2 + λ1)(

∂

∂t
− λ2 + λ3)

2

A2

+ e−λ3t(
∂

∂t
− λ3 + λ1)(

∂

∂t
− λ3 + λ2)(

∂A3

∂t
+ 2A4 + t

∂A4

∂t
)

+ (
∂

∂t
+ λ1)(

∂

∂t
+ λ2)(

∂

∂t
+ λ3)2u1 = −f (0)(a1, a2, a3, a4, t)

(2.5)

where

f (0)(a1, a2, a3, a4, t) = f(x0, ẋ0, ẍ0,
...
x0) and

x0 = a1,0e
−λ1t + a2,0e

−λ2t + (a3,0 + a4,0t)e−λ3t.

Here, we assume that f (0) can be expanded in a Taylor’s series as

f (0) = F0(a1, a2, t) + F1(a1, a2, t)(a3 + a4t)

+ F1(a1, a2, t)(a3 + a4t)
2 + K

(2.6)

Where F0, F1, F2, K do not contain the terms involving t, t2,K . Here,
first we impose the restriction that u1 can not contain the terms with
(a3 + a4t)

0, and (a3 + a4t)
1 of f (0), since these are already included in

the series expansion (2.3) of order ε0 (see also [7, 8, 11, 13, 14] for
details).

The coefficients of (a3 + a4t)
n, n = 0, 1, 2,K in the equation (2.6)

can be expanded in powers of e−λ1t, e−λ2t and e−λ3t of the form
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F0(a1, a2, t) =
∑

j,k

F0,j,k(a1, a2)e−(jλ1+kλ2)t,

F1(a1, a2, t) =
∑

j,k

F1,j,k(a1, a2)e−(jλ1+kλ2+λ3)t, K etc.
(2.7)

Substituting the value of f0 from equation (2.6) into equation (2.5)
and equating the various power of t, we obtain

e−λ1t(
∂

∂t
− λ1 + λ2)(

∂

∂t
− λ1 + λ3)

2

A1

+ e−λ2t(
∂

∂t
− λ2 + λ1)(

∂

∂t
− λ2 + λ3)

2

A2

+ e−λ3t(
∂

∂t
− λ3 + λ1)(

∂

∂t
− λ3 + λ2)(

∂A3

∂t
+ 2A4)

= −F0(a1, a2, t)− a3F1(a1, a2, t)

(2.8)

e−λ3t(
∂

∂t
− λ3 + λ1)(

∂

∂t
− λ3 + λ2)(

∂A4

∂t
) = −a4F1(a1, a2, t)(2.9)

and

(
∂

∂t
+ λ1)(

∂

∂t
+ λ2)(

∂

∂t
+ λ3)2u1

= −F2(a1, a2, t)(a3 + a4t)
2 + K.

(2.10)

Now substituting the value of F0(a1, a2, t) from equation (2.7) into
equation (2.9), we obtain

A4 =
∑

j,k

a4F1,j,k(a1, a2)e−(jλ1+kλ2)t

(jλ1 + kλ2)(jλ1 + kλ2 − λ1 + λ3)(jλ1 + kλ2 − λ2 + λ3)
(2.11)

Finally, substituting the value of F0(a1, a2t) and F1(a1, a2t) from the
equation (2.7) and the value of A4 from equation (2.11) into equation
(2.8), we obtain
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e−λ1t(
∂

∂t
− λ1 + λ2)(

∂

∂t
− λ1 + λ3)

2

A1

+ e−λ2t(
∂

∂t
− λ2 + λ1)(

∂

∂t
− λ2 + λ3)

2

A2

+ e−λ3t(
∂

∂t
− λ3 + λ1)(

∂

∂t
− λ3 + λ2)(

∂A3

∂t
)

= −
∑

j,k

F0,j,k(a1, a2)e−(jλ1+kλ2)t

−
∑

j,k

a3F1,j,k(a1, a2)e−(jλ1+kλ2+λ3)t

− 2
∑

j,k

a4F1,j,k(a1, a2)e−(jλ1+kλ2+λ3)t

(jλ1 + kλ2)
.

(2.12)

Now it is not easy to solve the equation (2.12) for the unknown func-
tions A1, A2 and A3 , if the nonlinear function f and the eigen val-
ues −λ1,−λ2,−λ3,−λ4 of the linear equation of (2.1) are not specified.
When these are specified the value of A1, A2 and A3 can be found sub-
ject to the condition that the coefficient in the solution of A1, A2 and
A3 do not become large (see also [1, 17] for details).
Equation (2.10) is a fourth order nonhomogeneous linear differential
equation. When the nonlinear function f is specified, we can find the
particular solution of the equation (2.10) for the unknown function u1.
This completes the determination of the first order solution of the equa-
tion (2.1).

3. Example

As an example of the above method, we consider the Duffing equation
type nonlinear system

x(4) + k1
...
x + k2ẍ + k3ẋ + k4x = −εf(x, ẋ, ẍ,

...
x ).(3.1)

Here f = x3.
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Therefore

f (0) = a1
3e−3λ1t + 3a1

2a2e
−(2λ1+λ2)t

+ 3a1a
2
2e
−(λ1+2λ2)t + a3

2e
−3(λ2t)

+ 3(a1
2e−(2λ1+λ3)t + 2a1a2e

−(λ1+λ2+λ3)t + a2
2e−(2λ2+λ3)t)

× (a3 + a4t)

+ 3(a1e
−(λ1+2λ3)t + a2e

−(λ2+2λ3)t)(a3 + a4)
2

+ e−3λ3t(a3 + a4t)
3

(3.2)

Therefore, we have

e−λ1t
( ∂

∂t
− λ1 + λ2

)( ∂

∂t
− λ1 + λ3

)2

A1

+ e−λ2t
( ∂

∂t
− λ2 + λ1

)( ∂

∂t
− λ2 + λ3

)2

A2

e−λ3t
( ∂

∂t
− λ3 + λ1

)( ∂

∂t
− λ3 + λ2

)(∂A3

∂t
+ 2A4

)

= −
{

a1
3e−3λ1t + 3a1

2a2e
−(2λ1+λ2)t + 3a1a2

2e−(λ1+2λ2)t

+ a2
3e−3λ2t + 3a1

2a3e
−(2λ1+λ3)t + 6a1a2a3e

−(λ1+λ2+λ3)t

+ 3a2
2a3e

−(2λ2+λ3)t
}

(3.3)

e−λ3t
( ∂

∂t
− λ3 + λ1

)( ∂

∂t
− λ3 + λ2

)(∂A4

∂t

)

= −3
{

a1
2a4e

−(2λ1+λ3)t + 2a1a2a4e
−(λ1+λ2+λ3)t

+ a2
2a4e

−(2λ2+λ3)t
}

(3.4)

and

( ∂

∂t
+ λ1

)( ∂

∂t
+ λ2

)( ∂

∂t
+ λ3

)2

u1

= −
{

3(a1a3
2e−(λ1+2λ3)t + a3

2a2e
−(2λ3+λ2)t) + a3

3e−3λ3t

+ (6a1a3a4e
−(λ1+2λ3)t + 6a2a3a4e

−(λ2+2λ3)t + 3a3
2a4e

−3λ3t)t

+ 3(a1a4
2e−(λ1+2λ3)t + a2a4

2e−(2λ3+λ2)t + a3a4
2e−3λ3t)t2 + a4

3e−3λ3tt3
}

(3.5)

Consequently, solving the equations (3.4) and (3.5), we obtain
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A4 = r1a1
2a4e

−2λ1t + r2a1a2a4e
−(λ1+λ2)t + r3a4a2

2e−2λ2t.(3.6)

Here

r1 =
3

2λ1(λ1 + λ3)(2λ1 − λ2 + λ3)
, r2 =

6
(λ1 + λ2)(λ2 + λ3)(λ1 + λ3)

,

r3 =
3

2λ2(λ2 + λ3)(2λ2 − λ1 + λ3)

and

u1 =m1a1a3
2e−(λ1+2λ3)t + m2a2a3

2e−(λ1+2λ3)t

+ m3a3
3e−3λ3t + a1a3a4e

−(λ1+2λ3)t(2m1t + m4)

+ a2a3a4e
−(λ1+2λ3)t(2m2t + m5)

+ a3
2a4e

−(λ1+2λ3)t(3m3t + m6)

+ a1a4
2e−(λ1+2λ3)t(m1t

2 + m7t + m8)

+ a2a4
2e−(λ1+2λ3)t(m2t

2 + m9t + m10)

+ a3a4
2e−3λ3t(3m3t

2 + m11t + m12)

+ a4
3e−3λ3t(m3t

3 + m13t
2 + m14t + m15),

(3.7)

where

m1 = − 3
{2λ3(λ1 + 2λ3 − λ2)(λ1 + λ3)

2} ,

m2 = − 3
{2λ3(λ2 + 2λ3 − λ1)(λ2 + λ3)

2} ,

m3 = − 1
{4λ2

3(3λ3 − λ1)(3λ3 − λ2)}
,

m4 = 2m1

( 2
(λ1 + λ3)

+
1

(λ1 + 2λ3 − λ2)
+

1
2λ3

)
,

m5 = 2m2

( 2
(λ2 + λ3)

+
1

(λ2 + 2λ3 − λ1)
+

1
2λ3

)
,

m6 = 3m3

( 2
(3λ3 − λ1)

+
1

(3λ3 − λ2)
+

1
λ3

)
,

m7 = m1

( 4
(λ1 + λ3)

+
2

(λ1 + 2λ3 − λ2)
+

1
λ3

)
,
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m8 = m1

( 4
(λ1 + λ3)

2 +
6

(λ1 + λ3)
2 +

2
(λ1 + 2λ3 − λ2)

2

+
2

λ3(λ1 + λ3)
+

1
λ3(λ1 − 2λ3 − λ2)

+
1

2λ3
2

)
,

m9 = m2

( 4
(λ2 + λ3)

+
2

(λ2 + 2λ3 − λ1)
+

1
λ3

)
,

m10 = m2

( 4
(λ2 + λ3)

+
6

(λ2 + λ3)
2 +

2
(λ2 + 2λ3 − λ1)

2

+
2

λ3(λ2 + λ3)
+

1
λ3(λ2 + 2λ3 − λ1)

+
1

2λ3
2

)
,

m11 = 3m3

( 2
λ3

+
2

(3λ3 − λ1)
+

2
(3λ3 − λ2)

)
,

m12 = 3m3

( 3
2λ3

2 +
2

λ3(3λ3 − λ1)
+

2
λ3(3λ3 − λ1)

+
2

(3λ3 − λ1)
2 +

2
(3λ3 − λ2)

2 +
2

(3λ3 − λ1)(3λ3 − λ2)

)
,

m13 = m3

( 3
λ3

+
3

(3λ3 − λ1)
+

3
(3λ3 − λ2)

)
,

m14 = m3

( 9
2λ3

2 +
6

λ3(3λ3 − λ1)
+

6
λ3(3λ3 − λ2)

+
6

(3λ3 − λ1)
2 +

6
(3λ3 − λ2)

2 +
6

(3λ3 − λ1)(3λ3 − λ2)

)
,

m15 = m3

( 3
λ3

3 +
9

2λ2
3(3λ3 − λ1)

+
9

2λ2
3(3λ3 − λ2)

+
6

λ3(3λ3 − λ1)
2 +

6
λ3(3λ3 − λ2)

2 +
6

(3λ3 − λ1)3

+
6

(3λ3 − λ2)3
+

6
(3λ3 − λ1)2(3λ3 − λ2)

+
6

(3λ3 − λ1)(3λ3 − λ2)2
+

6
λ3(3λ3 − λ1)(3λ3 − λ2)

)
.

Substituting the value of A4 from equtaion (3.6) into equtaion (3.3),
we obtain

e−λ1t
( ∂

∂t
− λ1 + λ2

)( ∂

∂t
− λ1 + λ3

)2

A1

+ e−λ2t
( ∂

∂t
− λ2 + λ1

)( ∂

∂t
− λ2 + λ3

)2

A2
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e−λ3t
( ∂

∂t
− λ3 + λ1

)( ∂

∂t
− λ3 + λ2

)(∂A3

∂t

)

= −
{

a3e
−3λ1t + 3a1

2a2e
−(2λ1+λ2)t + 3a1a

2
2e
−(λ1+2λ2)t

+ a2
3e−3λ2t + 3a1

2a3e
−(2λ1+λ3)t + 6a1a2a3e

−(λ1+λ2+λ3)t

+ 3a2
2a3e

−(2λ2+λ3)t +
3
λ1

a2
1a4e

−(2λ1+λ3)t

+
12

λ1 + λ2
a1a2a4e

−(λ1+λ2+λ3)t +
3
λ2

a2
2a4e

−(2λ2+λ3)t
}

.

(3.8)

To separate the equation (3.8), for determining the unknown functions
A1, A2 and A3, we consider the relations (see also [1,16] for details)
among the eigen values as λ1 ≈ 2λ2, λ1 ≈ λ2 + 2λ3 and λ3 = λ4 for
critical condition. Under these conditions, we obtain

e−λ1t
( ∂

∂t
− λ1 + λ2

)( ∂

∂t
− λ1 + λ3

)2

A1

= −
{

a3e
−3λ1t + 3a1

2a2e
−(2λ1+λ2)t + 3a1a

2
2e
−(λ1+2λ2)t

+ a2
3e−3λ2t + 3a1

2a3e
−(2λ1+λ3)t

+ 6a1a2a3e
−(λ1+λ2+λ3)t + 3a2

2a3e
−(2λ2+λ3)t

+
3
λ1

a2
1a4e

−(2λ1+λ3)t

(3.9)

+
12

λ1 + λ2
a1a2a4e

−(λ1+λ2+λ3)t +
3
λ2

a2
2a4e

−(2λ2+λ3)t
}

e−λ2t
( ∂

∂t
− λ2 + λ1

)( ∂

∂t
− λ2 + λ3

)2

A2 = 0(3.10)

e−λ3t
( ∂

∂t
− λ3 + λ1

)( ∂

∂t
− λ3 + λ2

)2 ∂A3

∂t
= 0.(3.11)

The particular solutions of equations (3.9)-(3.11) are

A1 = l1a1
3e−2λ1t + l2a1

2a2e
−(λ1+λ2)t + l3a1a2

2e−2λ2t

+ l4a2
3e−(3λ2−λ1)t + l5a1

2a3e
−(λ1+λ3)t + l6a1a2a3e

−(λ2+λ3)t

+ l7a2
2a3e

−(2λ2+λ3−λ1)t + l8a1
2a4e

−(λ1+λ3)t

+ l9a1a2a4e
−(λ2+λ3)t + l10a2

2a4e
−(2λ2+λ3−λ1)t

(3.12)

A2 = 0
A3 = 0
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where

l1 =
1

(3λ1 − λ2)(3λ1 − λ3)
2 , l2 =

3
2λ1(2λ1 + λ2 − λ3)

2 ,

l3 =
3

(λ1 + λ2)(λ1 + 2λ2 − λ3)
2 , l4 =

1
2λ2(3λ2 − λ3)

2

l5 =
3

4λ1
2(2λ1 − λ2 + λ3)

, l6 =
6

(λ1 + λ2)
2(λ1 + λ3)

l7 =
3

4λ2
2(λ2 + λ3)

, l8 =
3

4λ3
1(2λ1 − λ2 + λ3)

l9 =
12

(λ1 + λ2)3(λ1 + λ3)
, l10 =

3
4λ2

3(λ2 + λ3)
.

(3.13)

Substituting the values of A1, A2, A3 and A4 from equations (3.6) and
(3.12) into (2.4), we obtain

ȧ1 = ε{l1a1
3e−2λ1t + l2a1

2a2e
−(λ1+λ2)t + l3a1a2

2e−2λ2t

+ l4a2
3e−(3λ2−λ1)t + l5a1

2a3e
−(λ1−λ3)t + l6a1a2a3e

−(λ2+λ3)t

+ l7a2
2a3e

−(2λ2+λ3−λ1)t + l8a1
2a4e

−(λ1+λ3)t

+ l9a1a2a4e
−(λ2+λ3)t + l10a2

2a4e
−(2λ2+λ3−λ1)t}

(3.14)

ȧ2 = 0
ȧ3 = 0

ȧ4 = ε{r1a
2
1a4e

−2λ1t + r2a1a2a4e
−(λ1+λ2)t + r3a4a

2
2e
−2λ2t}.

Since a1, a2, a3, a4 are proportional to the small parameter ε, they are
slowly varying functions of time t. Hence they change very little during
a period. i.e., they are almost constant in a period. Consequently, we
can solve equation (3.14) by assuming a1, a2, a3 and a4 are constants in
the right hand sides of (3.14). Thus the solutions of equations (3.14) are
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a1 = a1,0 + ε
{

l1a1,0
3(1− e−2λ1t)/2λ1

+ l2a1
2a2(1− e−(λ1+λ2)t)/(λ1 + λ2)

+ l3a1a
2
2(1− e2λ2t)/2λ2 + l4a2

3(1− e−(3λ2−λ1)t)/(3λ2 − λ1)

+ l5a1
2a3(1− e−(λ1+λ3)t)/(λ1 + λ3)

+ l6a1a2a3(1− e−(λ2+λ3)t)/(λ2 + λ3)

+ l7a2
2a3(1− e−(2λ2+λ3−λ1)t)/(2λ2 + λ3 − λ1)

+ l8a1
2a4(1− e−(λ1+λ3)t)/(λ1 + λ3)

+ l9a1a2a4(1− e−(λ2+λ3)t)/(λ2 + λ3)

+ l10a2
2a4(1− e−2(λ2+λ3−λ1)t)/(2λ2 + λ3 − λ1)

}

(3.15)

a2 = a2,0,

a3 = a3,0,

a4 = a4,0 + ε
{

(1− r − 1a1
2a4e

−2λ1t)/(−2λ1)

+ r2a1a2a4(1− e−(λ1+λ2)t)/(λ1 + λ2)

+ r3a4a2
2(1− e−2λ2t)/2λ2

}
.

(3.16)

Finally we obtain the first approximation solution of the equation
(3.1) as

x(t, ε) = a1e
−λ1t + a2e

−λ2t + (a3 + a4t)e−λ3t + εu1 (3.17)

where a1, a2, a3, a4 are given by the equation (3.15) and u1 is given by
the equation (3.7).

4. Results and discussion

In order to test the accuracy of an approximate solution obtained by
a certain perturbation method, we sometimes compare the approximate
solution to the numerical solution. With regard to such a comparison
concerning the presented asymptotic solution obtained by KBM method
of this paper, we refer the works of Murty et al [5].
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For the conditions λ1 ≈ 2λ2, λ1 ≈ λ2 + 2λ3 , and λ3 = λ4, we have
chosen λ1 = 2.50, λ2 = 1.25, λ3 = λ4 = 1.0 and ε = 0.1. We have
computed x(t) by equation (3.16) in which a1, a2, a3, a4 are evaluated
by the equation (3.15) and u1 is evaluated by the equation (3.7) with
initial conditions a1 = 1.0, a2 = 0.25, a3 = −0.25, a4 = 0.0[ or x(0) =
0.999594, ẋ(0) = −2.561182, ẍ(0) = 6.384838,

...
x (0) = −15.828870 ] and

the results for various time t, have been given in second column of Table.
Corresponding numerical solutions computed by fourth order Runge-
Kutta method, denoted by xnu and have been given in third column of
Table. The percentage errors have been calculated and given in fourth
column. From Table, we see that the percentage errors are not greater
than 1%. Thus the new asymptotic solution (3.16) agrees with numerical
solution nicely.

t x xnu E %

0.00 0.999594 0.999594 0.00000

0.50 0.266584 0.266586 0.00074

1.00 0.061712 0.061713 0.00162

1.50 0.006065 0.006066 0.01648

2.00 -0.006577 -0.006575 -0.03042

2.50 -0.007607 -0.007605 -0.02629

3.00 -0.006014 -0.006013 -0.01663

3.50 -0.004244 -0.004242 -0.04715

4.00 -0.002849 -0.002848 -0.03511

4.50 -0.001863 -0.001863 -0.05371

5.00 -0.001198 -0.001197 -0.08354

5. Conclusion

Krylov -Bogoliubov-Mitropolskii method has been extended to solve
fourth order critically damped nonlinear systems under some special
conditions. The solutions obtained by this method are very near to the
numerical solutions. i.e. the solutions obtained by this method show
good agreement with those obtained by numerical method.
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