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ON SOME SPECIAL CONDITIONS OF n-TH ORDER
NON-OSCILLATORY NONLINEAR SYSTEMS

M. SHAMSUL ALAM AND M. B. HOSSAIN

ABSTRACT. Krylov-Bogoliubov-Mitropolskii method has been ex-
tended to obtain asymptotic solution of n-th order nonlinear dif-
ferential system characterized by certain non-oscillatory processes.
The damping force is considered in such a manner that one of the
characteristic roots of the linear system becomes small and others
are in integral multiple. The method is illustrated by an example.
The solutions for different initial conditions show a good agreement
with those obtained by numerical method.

1. Introduction

Krylov-Bogoliubov-Mitropolskii (KBM) method [1, 2] is well known
in the theory of nonlinear oscillations. The method was originally de-
veloped by Krylov and Bogoliubov (1] for obtaining periodic solution of
a second order system with small nonlinearities. Then the method was
amplified and justified by Bogoliubov and Mitropolskii [2] and later ex-
tended to nonlinear over-damped systems by Murty et al [3, 4]; but the
solutions obtained in [3, 4] were unable to give satisfactory results when
the characteristic roots of the linear system are in integral multiple. On
the other hand, Sattar [5] examined a critically damped nonlinear sys-
tem. The critically damped solution obtained by Sattar gives correct
results only for certain initial conditions. Shamsul [6] further investi-
gated critically damped and over-damped nonlinear systems and was
able to find desired solutions. Bojadziev (7] and Sattar [8] respectively
investigated 3-dimensional damped and over-damped systems. Shamsul
[9] studied a third-order over-damped system under some special con-
ditions especially when the characteristic roots are in integral multiple.
Then the method of [9] has been extended to an n-th order over-damped
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system in [10]. Shamsul [11] has also presented a unified method for n-th
order damped and over-damped systems.

In case of an over-damped system, the nature of asymptotic solutions
changes as the damping force changes. So, depending on damping forces,
different type of approximate solutions of a nonlinear system have been
found in some previous papers (see [8, 9, 10] for details). Yet all the
previous over-damped solutions are useless for some particular damping
forces, in where one of the characteristic roots becomes small or vanishes.
In order to cover these situations, a new asymptotic solution (based on
KBM method) has been presented.

2. The method

Let us consider a weakly nonlinear system governed by an n-th order
differential equation

(1) x(n) -+ klﬂ}'(n_l) + -4+ knlE — _gf(m,j:, . ,I(n—l))’

where z(), i = n,n — 1,---, represents i-th derivatives, ki, ko, -- are
constants, € is a small parameter and f is a nonlinear function. When
e = 0, the characteristic equation of (1) has n roots. In the case of
non-oscillatory processes, the roots are real and non-positive, say —A\;,

j=1,2,--- ,n and the solution of the linear equation is
n
(2) (t,0) = ) _ ajoe N,
j=1
where a9, j = 1,2,--- ,n are arbitrary constants.

When ¢ # 0, we propose an asymptotic solution of (1) in the form
n
(3) z(t,e) = Zaj(t)e_)‘jt +euy(ar, ag, -+ ,an,t) €20,
j=1

where each a; satisfies a first order differential equation

(4) a=eAj(a1,az, - ,an,t)+e2- .
Confining only to the first few terms,1,2,--- ,m, in the series ex-
pansions of (3) and (4), we evaluate the functions u;, ug,--- and Aj,

Bj, -+, j =1,2,--- ,n such that a;(t) appearing in (3) and (4) satisfy
the given differential equation (1) with an accuracy of ™. In order to
determine these unknown functions it was assumed by Murty et al [3]
that the functions w1, ug,--- do not contain the terms involving e=*¢,
j =1,2,---  n, since these are included in the series expansion (3) at
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order £°. To obtain some special non-oscillatory solution of (1), we im-
pose another restrictions that uj, uz,--- do not contain terms involving
te~(1AFizdz - tindn)t eyen if the smallest root, say A\; — 0 or/and the
rest of the roots are in integral multiple.

Differentiating x(t, €) n-times with respect to ¢, substituting the deriv-
atives z(™, z("=1) ... i and z in the original equation (1) and equating
the coefficients of ¢, we obtain

k]

9 ), (0
H<§+)\j)u1+;e”\1t H (a—)\j‘f‘/\k) Aj

®) 4 [y
= - f(O)(a'laafZ) tee )an7t)7

where f© = f(zo, o, - ,&") and z = 37_; a;(t)e "
In general, the function f(®) can be expanded in Taylor’s series as [3]

00,00, ,00

(6) f(O) — Z Fiyigo i e~ (1M1 +i2doto+inAn)t

sin

11=0,i2=0,-.+ i, =0

Substituting f(© from (6) into (5) and imposing the restriction that
uy excludes terms te~(1Mtizdat+inAn)t e shall able to find the un-
known functions u; and A;, j = 1,2,--- ,n, which complete the deter-
mination of the first order solution of (1). The method can be carried
out to higher order approximations in a similar way.

3. Example

As an example of the above procedure, we consider a nonlinear me-
chanical system with internal friction and relaxation [7, 9, 11, 13]

mi + o =0,
(™) 6 + o = Bi + ax + sz, s << 1.
Here z is the deformation, m is the mass of the system and «, (3,
v and s are constants. The terms with coefficients « and s represent
respectively the linear and nonlinear elasticity, the term with coefficient
B corresponds to the linear viscous damping and the term with coef-
ficient ~y reflects the linear relaxation. In some cases characterized by
small internal friction one can neglect the effect of relaxation. However,
there are situation in which the influence of relaxation is significant, for
instance in plastic materials, and a study of such cases based on the
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assumption of lack of relaxation may severely limit their closeness to re-
ality (see [12] for details). By imposing certain restrictions, Osiniskii [13]
investigated a damped case of the system (7). He had transformed the
system (7) to the following third order nonlinear differential equation

®) Ty li+pm Iy i tam Ty e = —ex®, e=sm7ly7h

Then Bojadziev [7] found a damped solution of (7) removing those
restrictions imposed by Osiniskii [13]. Shamsul [11] has rediscovered
Bojadziev’s solution and used it as a unified solution for damped and
over-damped systems. Shamsul [9] has also found approximate solutions
of (8) [i.e., the system (7)] by considering A; = 3\ or/and Ag = 33, or
A1 = A2 + 2X3. It is noted that Sattar’s [5] over-damped solution and
Shamsul’s [11] unified solutions were unable to give desired results in
these cases. However, all the over-damped solutions obtained in [8, 11, 9]
are useless when one of the characteristic roots of (8) becomes small
or vanishes. The main theme of this paper is to find an asymptotic
solution of (8) and as well as to generalize this technique for an n-th
order system when the smallest root becomes small or vanishes. It would
be mentioned that Sattar’s [5] over-damped solution and Shamsul’s [11]
unified solutions are very similar to classical type solution found by
Murty et al [4]. These solutions are only useful when the characteristic
roots are not in integral multiple.

It is obvious that equation (8) is a particular case of (1) in where
n=3 A+ X+ =k =771 M2+ Aeds + Agh; = k2 = Bm Iy
MA2As = k3 = am™ 1y~ and f = 3. Therefore,

(9)

FO = ade3Mt | 3a2apeP+A2)t | 302050~ (MRt
+ 3arae=Mit2A)t 4 6o, goaze~MHAat ANty 3, g2e— (M1 +22a)t

+ age_3>‘2t+3a%a36_(2)‘2+)‘3)t+3a2a§e"(>‘2+2)‘3)t+age—3>‘3t.

We assume that u; excludes the terms involving te~(f1A1+i2Aa+isAs)t

for all values of A\; > 0. In accordance to Shamsul’s [9] assumptions,
uy also excludes terms involving te~(i1A1+i2d2+isds)t when rest of the
roots are in integral multiple. So, the equation of u; does not contain
g3t o=(2M+A)t gnd em(AtAa)t of £ Moreover, u; respectively
excludes the term e~(A1+2X3)t when A3 = 2),, and e~3*3t when A3 = 3),.
Substituting the values of f(© form (9) into (5), we can separate it (when
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A3 = 2)2) into four independent equations as follows

3
0
H (52 +)\j) U1

(10) 1
= — (6ajagage~ P TretAe)t 4 34, g2e=(M+2Xs)t
+ a3e 2! 4 3adage” (PR M)t 4 3g,aZem Pt PAa)t 4 33Nty
(11) (% — M+ )\2) (% -\ + >\3> Ay = 3 —2,\1t
0 i)
(12) ('3} A - ’\2> (5; — A+ )\3> Ay = —3alaze™ Mt
and
9 a

—2Ait e()\3 A1 —2)\2)t

= —3a%aze —3aya;

The solution of (10) is

(14) Ul = caaragaze” MtAeTAs)t | 03a1a e~ (Mit2s)t | Cq a g~3M2t
+ csadaze™ PNt L coqoaem Pt 2Nt | o gBe—3Nat
where
cz = 6[(A1 + A2) (A2 + A3)(As + A1) 7Y,
c3 = 3[223(M1 + A3) (M — g + 223)] 7L,
(15) ca = [2X2(3X2 — A1) (32 — A3)] 71,

(
cs = 3[202(A2 + A3)(= A1 + 22 + )\3)]_1,
c6 = 3[2A3(N2 + A3) (=1 + A2 + 223)] 7,
c7 = [2A3(3A3 — A1) (83 — A2)] !

Then the solution of (11)-(13) is

(16) Al = _lla‘i’e_%\lta A2 - mla%a26_2)‘lt)
Az = —nla%age—”‘lt - ngala%e(’\3")‘1_2’\2),

where

(17)

l=1{(A2 = 3A1)(As — 3A1)] 7Y, my = 3[(A\1 + A2)(Az — Ag — 2X1)] 7,
n1 = 3[(A1 + A2)(A3 — Ao + 221)] 7Y, ma = 3[2A3(A1 + Ag)] L.
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When A3 = 3),, the functions A; and Az will be remain unchanged,
while u; and A3 will be changed in accordance Shamsul’s [9] assumption.
In this case, the functional relations of u; and As are respectively
(18)

Uy = Clala%e—()\+2)\2)t + 02a1a2a36—()\1+/\2+)\3)t +03a1a§e‘(’\1+2>\3)t
+ C5a%a3e“(2/\2+)\3)t +c6a2a§e—()\2+2)\3)t + 07a§e_3’\3t,
and
(19) Az = -—nla%ag,e“z’\lt - n3age()\3—3/\2)_

The new coefficients of uq and As are
(20) c = 3[2/\2()\1 + )\2)()\1 +2Xg — )\3)]_1, nsg = [2)\2(3)\2 — )\1)]_1,

and all other coefficients are given by (15) and (17).
Substituting the values of A;, As and A3 into (4) and then integrating
with respect to ¢, we obtain

L a1
1+ hado(1 —e2ht)

a

agz = a2 {/1 + eAflllaiO(l - 6—2’\1t), r= ml/ll,
az = agpo + 5[n1a%,0a3,0(e_2>‘1t - 1)/(2X1)
+ nzal,oag’o(e—klt —1)/M1], A3 = 2)q,

az = azp + s[nlaioag,o(e_”‘lt - 1)/(2A) — ngag,ot], A3 = 3.

(21)

Therefore, the first order solution of (7) is
(22) z(t,€) = a1 4 age™ 2t 4 aze ™ + cuy,

where ai, az and a3 are given by (21) and u; is given by (14) or (18).
This solution is valid for all values of A\; > 0. However, as the limit
A1 — 0, (22) is also useful where a3, a3 and ag will be computed by

a1,0

1+ 2ella{0t’
(23) ag =agpy/1+ 2€l1ai0t, r= ml/ll,

~ 2 2
a3 = a3 g — £(n1af gaz ot + n2a1003t), Az = 2Ag,

ay =

~ 2 3
asz =azpo — E(n1a1,0a3’0t + ngazyot), Az = 3)q.
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It is noted that the equation of as, i.e., the third equation of (4) has
not an exact solution. It has been solved by assuming that a;, a2 and
a3 are constant in the right hand side of (4) (see [3, 6, 9] for details).

4. Results and discussion

On some special conditions, asymptotic solutions of a third-order
nonlinear system have been found based on KBM method (in Sec. 3).
In order to test the accuracy of approximate solutions obtained by a
perturbation method, we sometimes compare the approximate solutions
to the numerical solutions (considered to be exact). With regard to such
a comparison concerning the presented KBM method of this paper, we
refer to the work of Murty et al [3, 4]. In our paper, for a particular set
of initial conditions, we have compared the asymptotic solution (22) to
those obtained by Runge-Kutta (fourth-order) method when Az = 2\,
and A3 = 3\, for two different values of A;.

First of all, (¢, €) has been calculated by approximate solution (22) in
which a;, a2 and a3 are evaluated by (21) with initial conditions [z(0) =
1,£(0) = —0.25,2(0) = —0.75] or a1 = 0.250530, azo = 1.304914,
azp = —0.568194 for m =1, a = 32—1, 8 = %%, v = %—‘%, s = 3% or,
A1 =01, A2 =1, A3 = 2 and € = 0.1. Then corresponding numerical
solution of (7) or (8) has been computed by Runge-Kutta method and
percentage errors are calculated. All the results are presented in Table 1.
From Table 1, it is clear that the percentage errors of the solution (22) is
much smaller than 1% (it is to be noted that for € = 0.1, error(s) of the
first order perturbation solution should occurs 1%). It is interesting to
note that as the difference of two roots Ay and Az increases, the error(s)
decreases. To clarify this matter, z(¢, ) has again been calculated by so-
lution (22) in which a1, a3 and a3 are evaluated by (21) with same initial
conditions [z(0) = 1,%(0) = —0.25,%(0) = —0.75] or , a1, = 0.456575,
azp = 0.721313, agg = —0.139374 for m =1, a = %, =3, v = 20,
§ = ﬁ or, Ay = 0.1, A = 1, A3 = 3 and € = 0.1. Corresponding numer-
ical solution has been computed and the percentage errors have been
calculated. The results are given in Table 2. Comparing the percentage
errors of two tables, we conclude that errors in Table 2, have occurred
smaller than those in Table 1.
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Table 1
t | aje=? z Ty E(%)
0.0 | 0.250530 | 1.000000 | 1.000000 | 0.0000
1.0 | 0.225613 | 0.632149 | 0.631975 | 0.0275
2.0 {0.203356 | 0.374093 | 0.373748 | 0.0923
3.0 | 0.183427 | 0.249815 | 0.249382 | 0.1736
5.0 | 0.149483 | 0.158844 | 0.158408 | 0.2752
7.0 10.122009 | 0.123296 | 0.122925 | 0.3018
10.0 | 0.090132 | 0.090197 | 0.089921 | 0.3069
15.0 | 0.054551 | 0.054551 | 0.054384 | 0.3071
20.0 | 0.033060 | 0.033060 | 0.032959 | 0.3064

Table 2
t | are= Mt T ZTnu E(%)
0.0 | 0.456575 | 1.000000 | 1.000000 | 0.0000
1.0 | 0.409057 | 0.670181 | 0.670665 | -0.0722
2.0 | 0.367196 | 0.468976 | 0.469533 | -0.1186
3.0 | 0.330125 | 0.368529 { 0.369048 | -0.1406
5.0 10.267750 | 0.273101 | 0.273479 | -0.1382
7.0 10.217857 | 0.218595 | 0.218872 | -0.1266
10.0 | 0.160486 | 0.160523 | 0.160712 | -0.1176
15.0 | 0.096923 | 0.096923 | 0.097033 | -0.1134
20.0 | 0.058695 | 0.058695 | 0.058761 | -0.1123

The error(s) of approximate solution (22), are not changed abruptly
as A; changes. Whenm=1,a=0,,8=%,fy=%,s=41—00r)\1=0,
X2 = 1, A3 = 3 and ¢ = 0.1, z(t,£) has been calculated by (22) in
which a1, as and a3 are evaluated by (23) with initial conditions [z(0) =
1,z(0) = —0.25,(0) = —0.75] or a19 = 0.393548, ago = 0.797038,
azo = —0.150077. Corresponding numerical solution has been computed
and percentage errors are calculated. The results are given in Table 3.
Comparing Table 2 and Table 3, we see that the percentage errors are
not greatly changed though A; has changed form 0.1 to 0. However,
as the difference of two roots A2 and A3 changes, the errors change
significantly. When m =1, a =0, 8 = %, v = %, s = % or A\; = 0,
X2 =1, A3 =2 and € = 0.1, z(¢,¢) has again been calculated by (22) in
which ay, as and a3 are evaluated by (23) with initial conditions [z(0) =
1,£(0) = —0.25,%(0) = —0.75] or a10 = 0.214378, aso = 1.364474,
azo = —0.593203. Corresponding numerical solution has been computed
and percentage errors are calculated. The results are given in Table 4.
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Comparing Table 4 and Table 3, we see that the percentage errors are
changed significantly, but the errors in Table 4 are similar to those in
Table 1, while the errors in Table 3 are similar to those in Table 2.

The method has another merit that only the first term of the approx-
imate solution (22), i.e., aje~** gives perturbation results of (7) when
t is large, especially t = O(e¢™!). Since ); is the smallest root, aje=**
dies out very slowly (for A; > 0) while the other components a,je"\ft,
j=2,3,--- die out quickly. Thus z(t,e) & aje”*! when t = O(¢™}). In
Tables 1-4, a;e"*!* has been given and it has been compared to z(t,€).

The difference between (22) and those obtained in [9] is that x(t,¢)
[presented by (22)] dies out vary slowly, since one of the roots is small or
vanishes. On the contrary, the solutions presented in [9] die out quickly
as all the roots were considered significant. One can not use the previous
solutions when one of the roots is small or vanishes. In these cases one or
more coefficients of variational equations of a;, j = 1,2, 3 of all previous
solutions or u; contains secular type terms te~t or the coefficients of u;
becomes large; but these are not desired in an asymptotic solution.

Table 3
t | aje™t T Ty E(%)
0.0 | 0.393548 | 1.000000 | 1.000000 | 0.0000
5.0 | 0.383766 | 0.389779 | 0.390570 | -0.2025
10.0 | 0.374680 | 0.374725 | 0.375288 | -0.1500
15.0 { 0.366209 | 0.366210 | 0.366578 | -0.1004
20.0 | 0.358288 | 0.358288 | 0.358493 | -0.0572
30.0 | 0.343876 | 0.343876 | 0.343825 | 0.0051
40.0 | 0.331074 | 0.331074 | 0.330838 | 0.0713
50.0 | 0.319602 | 0.319602 | 0.319232 | 0.1159

Table 4

t aie "1t z Tnu E(%)
0.0 | 0.214378 | 1.000000 | 1.000000 | 0.0000
5.0 10.211957 | 0.221773 | 0.221399 | 0.1689
10.0 §{ 0.209615 | 0.209686 | 0.209305 | 0.1820
15.0 ] 0.207350 | 0.207351 | 0.206960 | 0.1889
20.0 | 0.205157 | 0.205157 | 0.204757 | 0.1954
30.0 { 0.200971 | 0.200971 | 0.200557 | 0.2064
40.0 | 0.197031 | 0.197031 | 0.196607 | 0.2157
50.0 | 0.193315 | 0.193315 | 0.192883 | 0.2240
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5. Conclusion

An asymptotic solution has been obtained for n-th order nonlin-
ear differential system characterized by non-oscillatory processes. The
method is a generalization of KBM method [1, 2] and can be used to
obtain desired solution for certain damping forces. Thus it is no longer
to treat individual cases separately. The method is important especially
when one of the characteristic roots of the linear equation is small and
other are in integral multiple. The solution is even useful when one of
the roots vanishes.
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