• Title/Summary/Keyword: Nonlinear differential equation

Search Result 445, Processing Time 0.026 seconds

Existence of Solutions of Integral and Fractional Differential Equations Using α-type Rational F-contractions in Metric-like Spaces

  • Nashine, Hemant Kumar;Kadelburg, Zoran;Agarwal, Ravi P.
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.4
    • /
    • pp.651-675
    • /
    • 2018
  • We present ${\alpha}$-type rational F-contractions in metric-like spaces, and respective fixed and common fixed point results for weakly ${\alpha}$-admissible mappings. Useful examples illustrate the effectiveness of the presented results. As applications, we obtain sufficient conditions for the existence of solutions of a certain type of integral equations followed by examples of nonlinear fractional differential equations that are verified numerically.

EXISTENCE OF POSITIVE SOLUTIONS FOR FRACTIONAL DIFFERENTIAL EQUATIONS WITH A SINGULAR WEIGHT

  • Jeongmi Jeong;Yong-Hoon Lee
    • East Asian mathematical journal
    • /
    • v.40 no.1
    • /
    • pp.51-61
    • /
    • 2024
  • In this work, we study the existence of a positive solution for nonlinear fractional differential equation with a singular weight. For the proof, we introduce newly defined solution operator and use well-known Krasnoselski's fixed point theorem. We also give an example with a singular weight which may not be integrable.

Chaotic Vibration of a Curved Pipe Conveying Oscillatory Flow (조화진동유동을 포함한 곡선 파이프 계의 혼돈 운동 연구)

  • 박철희;홍성철;김태정
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.489-498
    • /
    • 1997
  • In this paper, chaotic motions of a curved pipe conveying oscillatory flow are theoretically investigated. The nonliear partial differential equation of motion is derived by Newton's method. The transformed nonlinear ordinary differential equation is a type of Hill's equation, which has the external and parametric excitation with a same frequency. Bifurcation curves of chaotic motion of the piping systems are obtained by applying Melnikov's method. Numerical simulations are performed to demonstrate theoretical results and show the strange attractor of the chaotic motion.

  • PDF

THE EXACT SOLUTION OF KLEIN-GORDON'S EQUATION BY FORMAL LINEARIZATION METHOD

  • Taghizadeh, N.;Mirzazadeh, M.
    • Honam Mathematical Journal
    • /
    • v.30 no.4
    • /
    • pp.631-635
    • /
    • 2008
  • In this paper we discuss on the formal linearization and exact solution of Klein-Gordon's equation (1) $u_{tt}-au_{xx}+bu-cu^3=0 a,b,c{\in}R^+$ So that we know an efficient method for constructing of particular solutions of some nonlinear partial differential equations is introduced.

ON THE INVERSE PROBLEM FOR STURM-LIOUVILLE OPERATOR WITH A NONLINEAR SPECTRAL PARAMETER IN THE BOUNDARY CONDITION

  • Mamedov, Khanlar R.
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.6
    • /
    • pp.1243-1254
    • /
    • 2009
  • The inverse scattering problem is investigated for some second order differential equation with a nonlinear spectral parameter in the boundary condition on the half line [0, $\infty$). In the present paper the coefficient of spectral parameter is not a pure imaginary number and the boundary value problem is not selfadjoint. We define the scattering data of the problem, derive the main integral equation and show that the potential is uniquely recovered.

EXISTENCE FOR A NONLINEAR IMPULSIVE FUNCTIONAL INTEGRODIFFERENTIAL EQUATION WITH NONLOCAL CONDITIONS IN BANACH SPACES

  • Yan, Zuomao
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.681-696
    • /
    • 2011
  • In this paper, we consider the existence of mild solutions for a certain class of nonlinear impulsive functional evolution integrodifferential equation with nonlocal conditions in Banach spaces. A sufficient condition is established by using Schaefer's fixed point theorem combined with an evolution system. An example is also given to illustrate our result.

Nonlinear Dynamic Analysis of Fiber Movement

  • Shen Danfeng;Ye Guoming
    • Fibers and Polymers
    • /
    • v.7 no.2
    • /
    • pp.191-194
    • /
    • 2006
  • This paper adopts nonlinear vibration method to analyze the fluctuation process of fiber movement. Based on Hamilton Principle, this paper establishes differential equation of fiber axial direction movement. Using variable-separating method, this paper separates time variable from space variable. By using the disperse movement equation of Galerkin method, this paper also discusses stable region of transition curve and points out those influencing factor and variation trend of fiber vibration.

Nonlinear vibration analysis of the viscoelastic composite nanoplate with three directionally imperfect porous FG core

  • Mohammadia, M.;Rastgoo, A.
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.131-143
    • /
    • 2019
  • In this study, the nonlinear vibration analysis of the composite nanoplate is studied. The composite nanoplate is fabricated by the functional graded (FG) core and lipid face sheets. The material properties in the FG core vary in three directions. The Kelvin-Voigt model is used to study the viscoelastic effect of the lipid layers. By using the Von-Karman assumptions, the nonlinear differential equation of the vibration analysis of the composite nanoplate is obtained. The foundation of the system is modeled by the nonlinear Pasternak foundation. The Bubnov-Galerkin method and the multiple scale method are used to solve the nonlinear differential equation of the composite nanoplate. The free and force vibration analysis of the composite nanoplate are studied. A comparison between the presented results and the reported results is done and good achievement is obtained. The reported results are verified by the results which are obtained by the Runge-Kutta method. The effects of different parameters on the nonlinear vibration frequencies, the primary, the super harmonic and subharmonic resonance cases are investigated. This work will be useful to design the nanosensors with high biocompatibility.

Nonlinear ship rolling motion subjected to noise excitation

  • Jamnongpipatkul, Arada;Su, Zhiyong;Falzarano, Jeffrey M.
    • Ocean Systems Engineering
    • /
    • v.1 no.3
    • /
    • pp.249-261
    • /
    • 2011
  • The stochastic nonlinear dynamic behavior and probability density function of ship rolling are studied using the nonlinear dynamical systems approach and probability theory. The probability density function of the rolling response is evaluated through solving the Fokker Planck Equation using the path integral method based on a Gauss-Legendre interpolation scheme. The time-dependent probability of ship rolling restricted to within the safe domain is provided and capsizing is investigated from the probability point of view. The random differential equation of ships' rolling motion is established considering the nonlinear damping, nonlinear restoring moment, white noise and colored noise wave excitation.