• Title/Summary/Keyword: Nonlinear Systems of Equations

Search Result 467, Processing Time 0.028 seconds

Robust Control of Linear Systems Under Structured Nonlinear Time-Varying Perturbations II : Synthesis via Convex Optimazation

  • Bambang, Riyanto-T.;Shimemura, Etsujiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.100-104
    • /
    • 1993
  • In Part 1, we derived robust stability conditions for an LTI interconnected to time-varying nonlinear perturbations belonging to several classes of nonlinearities. These conditions were presented in terms of positive definite solutions to LMI. In this paper we address a problem of synthesizing feedback controllers for linear time-invariant systems under structured time-varying uncertainties, combined with a worst-case H$_{2}$ performance. This problem is introduced in [7, 8, 15, 35] in case of time-invariant uncertainties, where the necessary conditions involve highly coupled linear and nonlinear matrix equations. Such coupled equations are in general difficult to solve. A convex optimization approach will be employed in this synthesis problem in order to avoid solving highly coupled nonlinear matrix equations that commonly arises in multiobjective synthesis problem. Using LMI formulation, this convex optimization problem can in turn be cast as generalized eigenvalue minimization problem, where an attractive algorithm based on the method of centers has been recently introduced to find its solution [30, 361. In the present paper we will restrict our discussion to state feedback case with Popov multipliers. A more general case of output feedback and other types of multipliers will be addressed in a future paper.

  • PDF

MITTAG-LEFFLER STABILITY OF SYSTEMS OF FRACTIONAL NABLA DIFFERENCE EQUATIONS

  • Eloe, Paul;Jonnalagadda, Jaganmohan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.977-992
    • /
    • 2019
  • Mittag-Leffler stability of nonlinear fractional nabla difference systems is defined and the Lyapunov direct method is employed to provide sufficient conditions for Mittag-Leffler stability of, and in some cases the stability of, the zero solution of a system nonlinear fractional nabla difference equations. For this purpose, we obtain several properties of the exponential and one parameter Mittag-Leffler functions of fractional nabla calculus. Two examples are provided to illustrate the applicability of established results.

Semi-active bounded optimal control of uncertain nonlinear coupling vehicle system with rotatable inclined supports and MR damper under random road excitation

  • Ying, Z.G.;Yan, G.F.;Ni, Y.Q.
    • Coupled systems mechanics
    • /
    • v.7 no.6
    • /
    • pp.707-729
    • /
    • 2018
  • The semi-active optimal vibration control of nonlinear torsion-bar suspension vehicle systems under random road excitations is an important research subject, and the boundedness of MR dampers and the uncertainty of vehicle systems are necessary to consider. In this paper, the differential equations of motion of the coupling torsion-bar suspension vehicle system with MR damper under random road excitation are derived and then transformed into strongly nonlinear stochastic coupling vibration equations. The dynamical programming equation is derived based on the stochastic dynamical programming principle firstly for the nonlinear stochastic system. The semi-active bounded parametric optimal control law is determined by the programming equation and MR damper dynamics. Then for the uncertain nonlinear stochastic system, the minimax dynamical programming equation is derived based on the minimax stochastic dynamical programming principle. The worst-case disturbances and corresponding semi-active bounded parametric optimal control are obtained from the programming equation under the bounded disturbance constraints and MR damper dynamics. The control strategy for the nonlinear stochastic vibration of the uncertain torsion-bar suspension vehicle system is developed. The good effectiveness of the proposed control is illustrated with numerical results. The control performances for the vehicle system with different bounds of MR damper under different vehicle speeds and random road excitations are discussed.

AN ABS ALGORITHM FOR SOLVING SINGULAR NONLINEAR SYSTEMS WITH RANK DEFECTS

  • Ge, Rendong;Xia, Zun-Quan
    • Journal of applied mathematics & informatics
    • /
    • v.12 no.1_2
    • /
    • pp.1-20
    • /
    • 2003
  • A modified ABS algorithm for solving a class of singular non-linear systems, $F(x) = 0, $F\;\in \;R^n$, constructed by combining the discreted ABS algorithm and a method of Hoy and Schwetlick (1990), is presented. The second differential operation of F at a point is not required to be calculated directly in this algorithm. Q-quadratic convergence of this algorithm is given.

NEW CONVERGENCE CONDITIONS OF SECANT METHODS VIA ALPHA THEORY

  • KIM, S.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.5 no.2
    • /
    • pp.101-115
    • /
    • 2001
  • Recent theoretical analysis of numerical methods for solving nonlinear systems of equations is represented by alpha theory of Newton method developed Smale et al. The theory was extended to Secant method by providing convergence conditions by Yakoubsohn which the Secant method is treated as an operator defined for analytical functions. We use Secant methods as an iterative scheme with approximations, which results in new convergence conditions. We compare the two conditions and show that the new conditions represent the features of Secant method in a more precise way.

  • PDF

Observability for the nonlinear fuzzy neutral functional differential equations (비선형 퍼지 함수 미분 방정식에 대한 관측가능성)

  • Lee, C.K.;Y.C. Kwun;Park, J.R.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.337-340
    • /
    • 2001
  • In this paper, we consider the observability conditions for the following nonlinear fuzzy neutral functional differential equations : (equation omitted), where x(t) is state function on E$\_$N/$\^$2/, u(t) is control function on E$\_$N/$\^$2/ and nonlinear continuous functions f:J C$\_$0/ E$\_$N/$\^$2/, k:J C$\_$0/ E$\_$N/$\^$2/ are satisfies global Lipschitz conditions.

  • PDF

Dynamic stability and nonlinear vibration of rotating sandwich cylindrical shell with considering FG core integrated with sensor and actuator

  • Rostami, Rasoul;Mohamadimehr, Mehdi;Rahaghi, Mohsen Irani
    • Steel and Composite Structures
    • /
    • v.32 no.2
    • /
    • pp.225-237
    • /
    • 2019
  • In this research, the dynamic stability and nonlinear vibration behavior of a smart rotating sandwich cylindrical shell is studied. The core of the structure is a functionally graded material (FGM) which is integrated by functionally graded piezoelectric material (FGPM) layers subjected to electric field. The piezoelectric layers at the inner and outer surfaces used as actuator and sensor, respectively. By applying the energy method and Hamilton's principle, the governing equations of sandwich cylindrical shell derived based on first-order shear deformation theory (FSDT). The Galerkin method is used to discriminate the motion equations and the equations are converted to the form of the ordinary differential equations in terms of time. The perturbation method is employed to find the relation between nonlinear frequency and the amplitude of vibration. The main objective of this research is to determine the nonlinear frequencies and nonlinear vibration control by using sensor and actuator layers. The effects of geometrical parameters, power law index of core, sensor and actuator layers, angular velocity and scale transformation parameter on nonlinear frequency-amplitude response diagram and dynamic stability of sandwich cylindrical shell are investigated. The results of this research can be used to design and vibration control of rotating systems in various industries such as aircraft, biomechanics and automobile manufacturing.

Steady-State Equilibrium Analysis of a Multibody System Driven by Constant Generalized Speeds

  • Park, Dong-Hwan;Park, Jung-Hun;Yoo, Hong-Hee
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1239-1245
    • /
    • 2002
  • A formulation which seeks steady-state equilibrium positions of constrained multibody systems driven by constant generalized speeds is presented in this paper. Since the relative coordinates are employed, constraint equations at cut joints are incorporated into the formulation. To obtain the steady-state equilibrium position of a multibody system, nonlinear equations are derived and solved iteratively. The nonlinear equations consist of the force equilibrium equations and the kinematic constraint equations. To verify the effectiveness of the proposed formulation, two numerical examples are solved and the results are compared with those of a commercial program.

A Method for Separating Volterra Kernels of Nonlinear Systems by Use of Different Amplitude M-sequences

  • Harada, Hiroshi;Nishiyama, Eiji;Kashiwagi, Hiroshi;Yamaguchi, Teruo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.271-274
    • /
    • 1998
  • This paper describes a new method for separation of the Volterra kernels which are identified by use of M-sequence. One of the authors has proposed a method for identification of Volterra kernels of nonlinear systems using M-sequence and correlation technique. When M-sequence are applied to a nonlinear systems, the cross-correlation function between the input and the output of the nonlinear systems includes cross-sections of high-order Volterra kernels. However, if various order Volterra kernels exixt on the obtained cross-correlation function, it is difficult to separate the Volterra kernels. In this paper, the authors show that the magnitude of Volterra kernels is maginified by the amplitude of M-sequence according to the order of Volterra kernels. By use of this property, each order Volterra kernels is obtained by solving linear equations. Simulations are carried out for some nonlinear systems. The results show that Volterra kernels can be separated in each order successfully by the proposed method.

  • PDF

An application of fourier spectral analysis to the analysis of linear dynamic systems coupled with nonlinear elements (비선형 요소가 결합된 선형역학시스템의 해석에의 Fourier 스펙트럼 해석기법의 응용)

  • 성단근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.61-64
    • /
    • 1986
  • The Fourier Spectral Analysis has been widely utilized in the analysis of linear dynamic systems. However, it may not be generaly extended to analyze nonlinear systems. In this paper, a linear underlying dynamic structure coupled with nonlinear elements is analyzed by using newly derived equations of motion after the linear dynamic structure is characterized by the Fourier spectral analysis.

  • PDF