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Abstract. Recent theoretical analysis of numerical methods for solving nonlinear
systems of equations is represented by alpha theory of Newton method developed
Smale et al. The theory was extended to Secant method by providing convergence
conditions by Yakoubsohn which the Secant method is treated as an operator de-
fined for analytical functions. We use Secant methods as an iterative scheme with
approximations, which results in new convergence conditions. We compare the two
conditions and show that the new conditions represent the features of Secant method
in a more precise way.

1. Introduction

We consider solving nonlinear systems of algebraic equations

(1) f(x) = 0,

where f : E → F with E and F two Euclidean spaces or more generally two Banach
spaces. It is a classical problem with applications in many branches of engineering.
Computationally popular numerical methods for (1) are Newton and Secant methods.
The theoretical aspects of the methods have been dealt recently with Alpha theory
[1]. Alpha theory for Newton method on solving (1) was developed by Smale et al and
Yakoubsohn extended the theory to Secant type method in [5, 6].

The conventional convergence analysis of Newton method can be described as follows.
Newton method defined as

Nf (x) = x− (f ′(x))−1f(x),

is considered to be an interation based on the map from R to itself, where f ′(x) is the
derivative of f at x. The convergence rate of Newton method is q-quadratic convergence
[2, 4], i.e., Newton method converges quadratically if an initial guess x0 is in an open set
N(r, ε) about a root r and there exists r ∈ Rn, γ, β > 0, such that N(r, γ) ⊂ D, with
D domain, f(r) = 0, f ′(r)−1 exists with ‖ f ′(r)−1 ‖< β, and f ′ Lipschitz continuous
in a region containing x0, where f is assumed to be continuously differentiable.
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On the other hand, in Alpha theory,

β(f, x) = |f ′(x)−1f(x)|, α(f, x) = β(f, x) sup
k≥2

∣∣∣∣∣
f ′(x)−1f (k)(x)

k!

∣∣∣∣∣
1/(k−1)

< α0,

and

γ(f, x) = sup
k≥2

∣∣∣∣∣
f ′(x)−1f (k)(x)

k!

∣∣∣∣∣
1/(k−1)

were introduced to verify the convergence of Newton method on a starting point where
f is an analytic system of equations. They computed a ball centered at a root ξ of f
that contains only approximate zeros, showed that Nf is a contraction map in a ball,
and evaluated a neighborhood for a point x in the ball of contraction. The value of the
universal constant alpha for Newton method is approximately 0.16. Alpha theory gives
the size of the basin of attraction around the zeros in terms of the invariant γ(f, x). It
is a strong result in the sense that the convergence does not depend on initial guesses,
but α(f, x) a number characterized by f and x.

Similar approach for theoretical analysis of Secant methods was made using Alpha
theory in [6]. Basically, Secant method is an iterative scheme as Newton method with
two given initial guesses for a root. The method reduces cost of computation f ′(x) by
approximating, which can be very expensive operation. The q-superlinear convergence
analysis of Secant method proved by [2] assumes a weak regularity for f . Yakoubsohn
in [6] assumes that f : E → F is an analytic function and showed that Secant mapping
defined as

(2) Sf (y, x) = y − ([y, x]f)−1f(y) = x− ([y, x]f)−1f(x)

where

[y, x]f =
∑

k≥1

Dkf(x)
k!

(y − x)k−1

is a contraction map and Sf maps B(x0,
u0

γ(f,x0)) into B(ξ, u0
γ(f,ξ)) with a contraction

constant less than or equal to 1/2 under the given conditions.
The aim of this paper is to analyze the conditions for Secant method given by

Yakoubsohn and give a new condition for contraction and robust alpha theorem. The
new condition is derived from the fact that Secant method uses an approximation to
the Jacobian of Newton method in practice, which was not considered in [6]. Wide use
of Secant method also comes from its effectiveness as Newton method in obtaining a
solution. In particular, the distance between x and y is very small, i.e., ‖ x− y ‖= ε,

[y, x]f = Df(x) + O(ε),

then the iterates produced from Secant map is nearly same as those of Newton method
given the same initial point. In this case, a similar value of a universal constant to
Newton method can be expected if a universal constant for Secant method is found and
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a contraction constant with which Secant map is a contractive map to be determined
near that of Newton method.

The values of u that satisfies the conditions are in the range of 0 ≤ u ≤ 0.08
approximately with varying α from 0 approximately to 0.008. Larger values of α does
not satisfy the conditions. This range of values of u and α are very small compared to
Newton method. This computation of α does not show the property of Secant method
well in the sense that an approximation is used in the iterative framework and it can be
very accurate as we choose ε very small. Therefore, it provides us room to improve the
universal constant and the contraction constant of Secant method in [6] to represent
its theoretical properties.

In Section 2, we define the approximate zero for Secant iteration as Newton and show
convergence of Secant method using a constant. Section 3 includes Newton method’s
contraction theorem to observe the valid range of α, which provides a basis for Se-
cant method’s contraction theorem. In section 4, we describe Yakoubsohn’s results
and discuss values with figures. The conditions are examined and a new condition is
derived. We show Yakoubshon’s condition and the proposed condition with Figures
and compare. Section 4 is devoted to concluding discussion.

2. Basic Analysis

The fact that Secant method involves less amount of work in computation of f ′
gives an edge over Newton method. The availability of f ′ and the degree of difficulty
of computing f ′ determine work involved in each iteration. However, Secant method
generally has a slower convergence rate than Newton method. The constant α indicates
the rate of convergence of Secant method and the convergence of Secant method is

(3) |xn − r| ≤ K|xn−1 − r|α
for some constant K [2].

We use the techniques of [1] to derive a convergence region on a given input for
Secant method. But the main difference is the speed of convergence reflected on the
constant K. To observe the difference clearly the definition of approximate zeros in
Newton method for two initial guesses is given as follows.

Definition 2.1. Let λn = λn−1 + λn−1, λ0 = λ1 = 1 and λ = 1+
√

5
2 . If, for given x0

and x1, xi+1 = Sf (xi, xi−1) is defined for i ≥ 2 and there is a x∗ such that f(x∗) = 0
with

(4) |xi − x∗| ≤
(

1
2

)λi−1

|x0 − x∗|,

then, x0 is an approximate zero of f and x∗ is called as the associated zero.

Let

γ = γ(f, x) = sup
k≥2

∣∣∣∣∣
f ′(x)−1f (k)(x)

k!

∣∣∣∣∣
1/(k−1)

,
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u = γ(f, x)|ω − x|,
and

E =
∞∑

k=2

k
f ′(x)−1f (k)(x)(ω − x)(k−1)

k!
.

The concept of approximate zeros and the convergence criteria by Smale is based on
the series E to converge with the radius of convergence u ≤ 1−

√
2

2 .

Lemma 2.2. [1] If u < 1−
√

2
2 , then

(a)
f ′(x)−1f ′(ω) = 1 + E

where |E| ≤ 1
(1−u)2

− 1 < 1.
(b)

|f ′(ω)−1f ′(x)| ≤ (1− u)2

1− 4u + 2u2
.

Lemma 2.3. For some ηn ∈ (xn−1, xn) and un = γ(f, r)(ηn − r),

(5) |f ′(r)−1f ′′(ηn)| ≤ γ(f, r)
1

(1− un)3
.

Proof.

f ′′(ηn) = f ′′(r) + f (3)(r)(ηn − r) +
∞∑

k=4

f (k)(r)(ηn − r)(k−2)

(k − 2)!
(ηn − r)(k−2)

f ′(r)−1f ′′(ηn) =
∞∑

k=2

f ′(r)−1f (k)(r)
(k − 2)!

(ηn − r)(k−2)

|f ′(r)−1f ′′(ηn)| ≤
∞∑

k=2

k(k − 1)u(k−2)
n

=
1

(1− un)3
.

Lemma 2.4. Let f(r) = 0, and un = max(γ(f, r)|ηn − r|, γ(f, r)|ζn − r|), for some
ηn, ζn ∈ (xn, xn−1), and Ψ(un) = 1− 4un + 2u2

n. We also let

cn =
γ

2Ψ(un)(1− un)
.

Then,
‖Sf (xn, xn−1)− r‖ < cn‖xn − r‖‖xn−1 − r‖

(6) ‖Sk
f (xn, xn−1)− r‖ < cλ−1

n ‖xn − r‖λ.
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Proof. From Secant iteration (2),

Sf (xn, xn−1)− r = xn −
(
[f(xn)− f(xn−1)]−1(xn − xn−1)

)
f(xn)− r

= [f(xn)− f(xn−1)]−1[f(xn)(xn−1 − r)− f(xn−1)(xn − r)]
= (f(xn)− f(xn−1))−1(xn − xn−1)(xn − xn−1)−1

[f(xn)(xn − r)−1 − f(xn−1)(xn−1 − r)−1](xn − r)(xn−1 − r)(7)

=
1
2
f ′(ζn)−1f ′′(ηn)(xn − r)(xn−1 − r),

for some ζn, ηn ∈ (xn, xn−1). Now,

|Sf (xn, xn−1)− r| =
1
2

∣∣f ′(ζn)−1f ′′(ηn)(xn − r)(xn−1 − r)
∣∣

=
1
2

∣∣f ′(ζn)−1f ′(r)f ′(r)−1f ′′(ηn)(xn − r)(xn−1 − r)
∣∣

≤ 1
2

∣∣f ′(ζn)−1f ′(r)
∣∣ ∣∣f ′(r)−1f ′′(ηn)

∣∣ |(xn − r)(xn−1 − r)| .

|Sf (xn, xn−1)− r| ≤ 1
2

∣∣f ′(ζn)−1f ′(r)
∣∣
(

1
(1− un)3

)
|(xn − r)(xn−1 − r)|

By Lemma 2.2 and 2.3,

|Sf (xn, xn−1)− r| ≤ 1
2

∞∑

k=0

|E|k
(

1
(1− un)3

)
|(xn − r)(xn−1 − r)|

≤ 1
2Ψ(un)(1− un)

|(xn − r)(xn−1 − r)|(8)

We let for k = 1, · · · , Sk
f (x1, x0) = Sf (xk, xk−1).

Sf (x1, x0) ≤ c0|x1 − r||x0 − r|.
where u0 = γ|x0 − r|. We assume that we are given initial guesses x0, x1 such that
|x1 − r| < |x0 − r|. Let λn = λn−1 + λn−2, λ0 = λ1 = 1 and λ = 1+

√
5

2 . Then,

|S2
f (x0, x1)− r| ≤ c2

0|x0 − r|3,

|Sk
f (x0, x1)− r| ≤ c

λk+1−1
0 |x0 − r|λk+1 .

From |xk+1 − r| = |Sk
f (x0, x1)− r|,

c0|xk+1 − r| ≤ |x0 − r|λk+1c
λk+1

0 ,

|xk+1 − r| ≤ 1
c0
|x0 − r|λk+1c

λk+1

0 ,

=
d

λk+1

0

c0
,
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where d0 = c0|x0 − r|. It follows that

|Sk
f (x1, x0)− r| ≤ ck|xk − r|λ|xk − r|(1−λ)|xk−1 − r|

≤ c0|xk − r|λ
(

dλk
0

c0

)1−λ (
d

λk−1

0

c0

)

= |xk − r|λ(c0)λ−1d
λk+1−λλk

0 .

Since λn+1 − λλn → 0 as n →∞, we show that (6) follows from (8):
For k = 0, (6) is trivial. By induction, we assume for k ≥ 1 that

|Sk−1
f (x1, x0)− r| ≤ (c0|x0 − r|)λk−1 |x0 − r|.

Using (8), we have

|Sk
f (x1, x0)− r| ≤ c0

[
(c0|x0 − r|)λk−1 |x0 − r|

] [
(c0|x0 − r|)λk−1−1 |x0 − r|

]

= (c0|x0 − r|)λk+1−1 |x0 − r|,
which holds for xn and xn−1.

Theorem 2.5. Let u = γ(f, x)|x − r| and ρ(u) = 1
2Ψ(u)(1−u) − 1

2 = 0. Suppose that
f(r) = 0 and f ′(r)−1 exists. If

|x− r| ≤ 1
2Ψ(u)(1− u)

for

and u is less than the small root y of ρ(u), then x is an approximate zero of f with
associate zero r.

Proof. We need to show that cn ≤ 1
2 from the definition 2.1 of the approximate zero.

From Lemma 2.4, if u < y, then γ
2Ψ(u)(1−u) < 1

2 .

3. Convergence of Newton Maps

In this section, we first describe Newton contraction theorem and robust α theorem.
The theorems include conditions on u and α to satisfy. We show the conditions in the
theorems with Figures to describe the valid range of the values. The range is used in
the next section to be compared to that of Secant methods.

Theorem 3.1. (N-Gamma theorem) [1] Suppose that f(ξ) = 0 and that Df(ξ)−1 exists.
If

‖ x− ξ ‖≤ 3−√7
2γ(f, ξ)

,

then x is an approximate zero of f with associated zero ξ, i.e., the sequence

x0 = x, xk+1 = Nf (xk), k ≥ 0
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is well defined and satisfies

‖ xk − ξ ‖≤
(

1
2

)2k−1

‖ x− ξ ‖, k ≥ 0.

Theorem 3.2. (N-Contraction theorem) [1] Let x ∈ E and u > 0 such that the two
conditions hold:
1.

c =
2α(f, x) + u

Ψ(u)2
< 1,

2.
α(f, x) + cu ≤ u.

Then Nf is a contraction map of the ball B
(
s, u

γ(f,x)

)
into itself with contraction con-

stant c. Hence there is a unique root ξ of f in B
(
x, u

γ(f,x)

)
and for all y ∈ B

(
x, u

γ(f,x)

)

tend to ξ under iteration of Nf .

The left graph of Fig 1. shows the graph of 2α(f,x)+u
Ψ(u)2

−1 in the variables α and u, To
satisfy the condition 1 in Theorem 3.2, c− 1 should be negative. Therefore, the range
of values that hold the condition 1 is approximately 0 ≤ u ≤ 1. The right graph of Fig
1. shows α(f, x)+cu−u in Theorem 3.2. The condition 2 requires α(f, x)+cu−u ≤ 0,
therefore, approximately 0 ≤ α ≤ 0.015 satisfies the condition 2. Figure 2 indicates
the range of the values for u satisfying the conditions 1 and 2 simultaneously, which is
approximately 0 ≤ u ≤ 0.1.

4. Secant Iteration

We describe Yakoubsohn’s results and show the conditions in his contraction theorem
with Figures.

Secant iteration is defined in [6] as

Sf (xn, xn−1) = xn−1 −A(xn, xn−1)−1f(xn−1)

where

A(xn, xn−1) =
∑

k≥1

Dfk(xn−1)
k!

(xn − xn−1)k−1,

and the secant operator A satisfies

f(xn)− f(xn−1) = A(xn, xn−1)(xn − xn−1),

If A−1 is available, then

A−1(xn, xn−1)(f(xn)− f(xn−1)) = xn − xn−1,

It is basically the same map as (2). The following theorems are derived using the
definition of the Secant map.
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Figure 1. Newton Condition 1 and 2 with u

Theorem 4.1. (S-Contraction) Let x0 ∈ E and u0 > 0 such that

Ψ(u0)(1− u0)− 4u0 > 0.

Suppose
1.

c :=
(α(f, x0) + u0)(1− u0)2

(Ψ(u0)(1− u0)− 2u0)(Ψ(u0)(1− u0)− 4u0)
+

u0

(Ψ(u0)(1− u0)− u0)
< 1.

2.
(1− u0)2α(f, x0) + u2

0(3− 2u0)
Ψ(u0)

≤ u0.

Then,

1. Sf maps B
(
x0,

u0
γ(f,x0)

)2
into B

(
x0,

u0
γ(f,x0)

)
.
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Figure 2. Newton Condition 1 and 2 with u

2. Sf is a contraction map with contraction constant c.
3. There is a unique root ξ of f such that

‖ x0 − ξ ‖≤ u0

γ(f, x0)
.

Theorem 4.2. (S Robust α Theorem) Let u0, α0 be two positive numbers such that
(a).

c0 :=
(α0 + u0)(1− u0)2

(Ψ(u0)(1− u0)− 2u0)(Ψ(u0)(1− u0)− 4u0)
+

u0

(Ψ(u0)(1− u0)− u0)
<

1
2

(b).
(1− u0)2α(f, x0) + u2

0(3− 2u0)
Ψ(u0)

≤ u0.

(c). (
u0 +

α0

1− c0

) (
1

Ψ( α0
1−c0

)(1− α0
1−c0

)

)
≤ 3−√7

2
.

(d).
1

Ψ( α0
1−c0

)(1− α0
1−c0

)
<

1
2c0

.

If α(f, x0) ≤ α0 then there is a root ξ such that

B

(
x0,

u0

γ(f(x0)

)
⊂ B

(
x0,

3−√7
2γ(f, ξ)

)
.

Moreover, Sf maps B
(
x0,

u0
γ(f,x0)

)
into B

(
ξ, u0

γ(f,ξ)

)
with contraction constant less than

or equal to 1/2.
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We now describe a contraction theorem with a new contraction constance, different
from Thoerem 4.2. The contraction constant shown here provides larger range of values
than Theorem 4.2, which represents the features of Secant maps. Secant contraction
theorem and S robust α algorithm in [6] and the assumptions used in the theorems are
also shown in Figures. The ranges of values valid for the theorems are examined and
compared.

We show that Secant method is a contraction mapping based on the following lemma.

Lemma 4.3. ( [6] p.8. ) Let x, y, x1, y1 ∈ E and u = γ(f, x) ‖ x− y ‖, u1 = γ(f, x) ‖
x − x1 ‖, v1 = γ(f, x) ‖ y − y1 ‖, v = γ(f, x) ‖ x − y1 ‖ . Assume that u, u1, v, and
v1 < 1. Then,

1. ‖ Df(x)−1([y1, x1]f − [y, x]f) ‖≤ u1 + v1 − u1(v1 + u)
(1− u1)(1− v1 − u)(1− u)

2. ‖ Df(x)−1([y1, x1]f −Df(x)) ‖≤ u1 + v − u1v

(1− u1)(1− v)
Moreover if 2(1− u1)(1− v)− 1 > 0 then

3. ‖ [y1, x1]f−1Df(x)) ‖≤ (1− u1)(1− v)
2(1− u1)(1− v)− 1

.

In view of Lemma 4.3, it follows

‖ ([y, x]f)−1f(x)− ([z, x]f)−1f(x) ‖ ≤ ‖ ([z, x]f)−1Df(x) ‖‖ Df(x)−1([y, x]− [z, x])f(x) ‖ ·
‖ ([y, x]f)−1Df(x) ‖‖ Df(x)−1f(x) ‖

≤ 1
(1− 2u)2

β(f, x)γ(f, x) ‖ z − y ‖

=
1

(1− 2u)2
α(f, x) ‖ z − y ‖ .

From the definition of Secant map with A(y, x) = [y, x]f ,

(9) S(y, x) = y −A(y, x)−1f(y),

where

A(y, x) =
∑

k≥1

Dfk(x)
k!

(y − x)k−1.

Since S(y, x) takes two variable x and y as input, S(x, y) can be considered as a map
from 2n-dimensional space E to an n-dimensional space F . Hence, we consider S(x, y)
itself a function.

Notice that if we let u = γ(f, x) ‖ y − x ‖ and v = γ(f, y) ‖ x− y ‖, then,

‖ ([y, x]f)−1f(x) ‖ = ‖ ([y, x]f)−1Df(x) ‖‖ Df(x)−1f(x) ‖
≤ β(f, x)

(1− 2u)2
(10)
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and

‖ ([x, y]f)−1f(y) ‖ = ‖ ([x, y]f)−1Df(y) ‖‖ Df(y)−1f(y) ‖
≤ β(f, y)

(1− 2v)2
.

We show S(y, x) is a contractive map by differentiating S(y, x) with respect to y and
x.

Lemma 4.4. Let βN (f, y) =‖ Df(y)−1f(y) ‖ be the Newton step at y, and u =
γ(f, x) ‖ x − y ‖. Then, the partial derivatives of Secant map with respect to x and y
are

‖ ∂S(y, x)
∂y

‖≤ α(f, x)
(1− 2u)2

‖ ∂S(y, x)
∂x

‖≤ α(f, y)
(1− 2v)2

.

Proof. Using (2), the equation (9) can be written as

(11) A−1(y, x)(f(y)− f(x)) = y − x.

Let ej denote a unit vector with 1 in jth position, for j = 1, . . . , n. In view of (11),

−S(y + ejh, x) + S(y, x)
h

=
1
h

[y + ejh−A(x, y + ejh)−1f(y + ejh)− y + A(x, y)−1f(y)]

=
1
h

[y + ejh−A(x, y + ejh)−1f(y + ejh)− y + A(x, y)−1f(y)

+A(x, y + ejh)−1f(x)−A(x, y + ejh)−1f(x)

−A(x, y)−1f(x) + A(x, y)−1f(x)]

=
1
h

(
ejh + (x− y − ejh) + (y − x) + [A(x, y)−1 −A(x, y + ejh)−1]f(x)

)

=
1
h

(
[A(x, y)−1 −A(x, y + ejh)−1]f(x)

)

It can be shown from (10) that ‖ S(x, y)−S(x, ŷ) ‖≤ βN (f,x)
(1−2u)2

γ(f, x) ‖ y−ŷ ‖, with u =
γ(f, x) ‖ x− y ‖, we have

lim
h→0

S(x, y + ejh)− S(x, y)
h

= lim
h→0

(A−1(x, y)−A(x, y + ejh)−1)f(x)
h

≤ βN (f, x)
(1− 2u)2

γ(f, x)

≤ α(f, x)
(1− 2u)2
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The partial derivative of S(x, y) with respect to x is obtained as follows.

S(y, x + ejh)− S(y, x) = y + A(x + ejh, y)−1f(y)− y −A(x, y)−1f(y)

Using ‖ S(x, y)− S(x̂, y) ‖≤ βN (f,y)
(1−2v)2

γ(f, y) ‖ x− x̂ ‖, v = γ(f, y) ‖ x− y ‖,

lim
h→0

S(y, x + ejh)− S(y, x)
h

= lim
h→0

(A−1(x + ejh, y)−A(x, y)−1)f(y)
h

≤ βN (f, y)γ(f, y)
(1− 2v)2

≤ α(f, y)
(1− 2v)2

We present a new contraction theorem as follows.

Theorem 4.5. (Contraction) Let βN (f, y) =‖ Df(y)−1f(y) ‖ be the Newton step at
y, and u = γ(f, x) ‖ x− y ‖. If

c1 :=
α(f, x)

(1− 2u)2
≤ 1, c2 :=

α(f, y)
(1− 2v)2

≤ 1,

we let c = max(c1, c2) and

(1− u0)2α0 + u2
0(3− u0)

Ψ(u0)
≤ u0,

then Secant iteration Sf maps B
(
x0,

u0
γ(f,x0)

)2
into B

(
x0,

u0
γ(f,x0)

)
. Sf is a contraction

mapping with constant c.

Proof. From Lemma 4.4 and Lemma 2.2 in [6], the proof is straight to show that Sf is
a contraction mapping with c.

The robust α theorem using the contraction constants in theorem 4.5 is derived as
follows.

Theorem 4.6. Let u0 and α0 be two real positive numbers such that
(a)

c0 := max
(

βN (f, y)(2v0 − v2
0) + 1− 2v2

0

(1− v0)2
,

1− u0

(1− 2u0)2
βN (f, x0)γ(f, x0)

)
<

1
2

(b)
(1− u0)2α0 + u2

0(3− 2u0)
Ψ(u0)

≤ u0,

(c) (
u0 +

α0

1− e0

) (
1

Ψ( α0
1−e0

)(1− α0
1−e0

)

)
≤ 3−√7

2
,
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Figure 3. Common condition (b) with u

(d) (
1

Ψ( α0
1−e0

)(1− α0
1−e0

)

)
≤ 1

2e0
.

If α(f, x0) ≤ α0, then there is a root Ψ such that

B

(
x0,

u0

γ(f, x0)

)
⊂ B

(
x0,

3−√7
2γ(f,Ψ)

)
.

And, Sf maps B
(
x0,

u0
γ(f,x0)

)
into B

(
x0,

3−√7
2γ(f,Ψ)

)
with a constant less than or equal to

1/2.

Proof. The result follows from Lemma 4.4, similarly to Theorem 1.2 in [6] with different
c.

We now compare the constant c in Theorem 4.6 with Theorem 4.2. The convergence
Theorem 4.1 and Theorem 4.2 require assumptions on the size of u. Each condition is
described in Fig. 4 and Fig. 5.

The figures show the function values of

f =
(α(f, x0) + u0)(1− u0)2

(Ψ(u0)(1− u0)− 2u0)(Ψ(u0)(1− u0)− 4u0)
+

u0

(Ψ(u0)(1− u0)− u0)
− 1

g =
(1− u0)2α(f, x0) + u2

0(3− 2u0)
Ψ(u0)

− u0

The values of f and g less than 0 correspond to valid α and u.
Figure 3 shows the common condition (b) in 4.2 and 4.6. The valid range of values

for α is 0 ≤ 0.15 for both cases approximately.
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Figure 4. Yakoubsohn’s condition (a) and New condition (a) with u

The range of α from the condition (a) of Theorem 4.2 is shown in the left side and
the condition (a) of Theorem 4.6 in the right side of Figure 4 and 5. The function
values less than zero are valid for the condition (a). The possible range of values of α
for the condition (a) is 0 ≤ α ≤ 0.177. Yakoubsohn’s condition (a) reduces the valid
range of α to 0 ≤ α ≤ 0.008. Therefore, the range of α is very small compared to
that of Newton method. On the other hand, as shown in Figure 5, the condition (a)
in Theorem 4.6 maintains the valid range of the values for α. And, the range is closer
to that of Newton map. Considering the fact that Secant iteration resembles Newton
method, it is reasonable to expect α behaves like that of Newton.

5. Concluding Discussions

We have presented a new condition for contraction theorem for Secant method.
The conditions are derived from the observation that Secant method approximates the
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Figure 5. Yakoubsohn’s condition (a) and (b), and New condition (a)
and (b) with u

Jacobian in Newton’s map, therefore, in a very close approximation, the behavior of
the algorithm can be expected to be similar to that of Newton’s method. We have
shown that new conditions can be derived using the properties of Secant map, and also
in the Figures that the proposed conditions have better representation of the features
of Secant maps.
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