• Title/Summary/Keyword: Nonlinear Stability

Search Result 1,792, Processing Time 0.032 seconds

Some Properties on Receding Horizon $H_{\infty}$ Control for Nonlinear Discrete-time Systems

  • Ahn, Choon-Ki;Han, Soo-Hee;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.460-465
    • /
    • 2004
  • In this paper, we present some properties on receding horizon $H_{\infty}$ control for nonlinear discrete-time systems. First, we propose the nonlinear inequality condition on the terminal cost for nonlinear discrete-time systems. Under this condition, noninceasing monotonicity of the saddle point value of the finite horizon dynamic game is shown to be guaranteed. We show that the derived condition on the terminal cost ensures the closed-loop internal stability. The proposed receding horizon $H_{\infty}$ control guarantees the infinite horizon $H_{\infty}$ norm bound of the closed-loop systems. Also, using this cost monotonicity condition, we can guarantee the asymptotic infinite horizon optimality of the receding horizon value function. With the additional condition, the global result and the input-to-state stable property of the receding horizon value function are also given. Finally, we derive the stability margin for the saddle point value based receding horizon controller. The proposed result has a larger stability region than the existing inverse optimality based results.

  • PDF

The Nonlinear Stability of Density Fronts in the Ocean

  • Yang Li;Moon, Sung-Euii;Ryu, Chan-Su;Kim, Baek-Jo
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.3 no.2
    • /
    • pp.105-112
    • /
    • 1999
  • Density and temeprature fronts are common features of the ocean. However, frontal dynamics are not quasi-geostrophic because the isopycnal deflections associated with fronts are large compared with the scale height of the hydrostatic geopotential. The frontal geostrophic model, developed by Cushman-Roisin et al.(1992) is generally used fro describing the dynamics of surface-density ocean fronts, whereas the two-layer frontal geostrophic model is used for fronts on a sloping continental shelf. This paper investigates the baroclinic nonlinear stability of surface-density ocean fronts and fronts on a sloping continental shelf using the two-layer frontal geostrophic model mentioned above. Nonlinear stability criteria for the two kinds of fronts are obtained using Arnol'd's (1965; 1969) variational principle and a prior estimate method. This is the first time a nonlinear stability criterion for surface ocean fronts has been established, furthermore, the results obtained for fronts on a sloping bottom are superior to any previous ones.

  • PDF

Development of Rotordynamic Analytical Model and Analysis of Vibration Response of a Turbocharger (터보차져의 로터다이나믹 해석모델 개발 및 진동응답 해석)

  • Kim, Byung-Ok;Lee, An-Sung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.5
    • /
    • pp.35-42
    • /
    • 2010
  • This paper deals with the development of analytical model of a turbocharger and its detail rotordynamic analysis. Two analytical models, which are verified by experimental modal testing, are proposed and the analytical model including rotor shaft extended to compressor and turbine wheel end side is chosen. A rotordynamic analysis includes the critical map, Campbell diagram, stability, and unbalance response, especially nonlinear transient response considering nonlinear fluid film force at bearings. Although the linearized analysis accurately predicts the critical speeds, stability limit, and stability threshold speed, the predicted vibration results are not valid for speeds above the stability threshold speed since the rotor vibrates with a subsynchronous component much larger than the one synchronous with rotor speed. Hence, for operating speed above the stability threshold, a nonlinear transient analysis considering nonlinear fluid film force must be performed in order to accurately predict vibration responses of rotor and guarantee results of analysis.

Thermal nonlinear dynamic and stability of carbon nanotube-reinforced composite beams

  • M. Alimoradzadeh;S.D. Akbas
    • Steel and Composite Structures
    • /
    • v.46 no.5
    • /
    • pp.637-647
    • /
    • 2023
  • Nonlinear free vibration and stability responses of a carbon nanotube reinforced composite beam under temperature rising are investigated in this paper. The material of the beam is considered as a polymeric matrix by reinforced the single-walled carbon nanotubes according to different distributions with temperature-dependent physical properties. With using the Hamilton's principle, the governing nonlinear partial differential equation is derived based on the Euler-Bernoulli beam theory. In the nonlinear kinematic assumption, the Von Kármán nonlinearity is used. The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. The critical buckling temperatures, the nonlinear natural frequencies and the nonlinear free response of the system is obtained. The effect of different patterns of reinforcement on the critical buckling temperature, nonlinear natural frequency, nonlinear free response and phase plane trajectory of the carbon nanotube reinforced composite beam investigated with temperature-dependent physical property.

A Study on Judging Stability of Nonlinear Sysems (비선형계의 안정도 판정에 관한 연구)

  • 윤재장
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.11 no.4
    • /
    • pp.5-8
    • /
    • 1974
  • In this paper, several criterias of Lyapunov, Malkin, Popov, etc. about stability of nonlinear systems are compared, and study on methods, through several examples, of judging the stability of nonlinear systems by considering the energy input into the system and the one put out of the system is concentrated.

  • PDF

BOUNDEDNESS IN THE FUNCTIONAL NONLINEAR PERTURBED DIFFERENTIAL SYSTEMS

  • GOO, YOON HOE
    • The Pure and Applied Mathematics
    • /
    • v.22 no.2
    • /
    • pp.101-112
    • /
    • 2015
  • Alexseev's formula generalizes the variation of constants formula and permits the study of a nonlinear perturbation of a system with certain stability properties. In this paper, we investigate bounds for solutions of the functional nonlinear perturbed differential systems using the two notion of h-stability and $t\infty$-similarity.